

Welcome to MDAnalysis User Guide’s documentation!

MDAnalysis version: 1.0.0

Last updated: Jun 17, 2020

MDAnalysis (www.mdanalysis.org [https://www.mdanalysis.org]) is a Python
toolkit to analyse molecular dynamics files and trajectories in many popular formats. MDAnalysis can write
most of these formats, too, together with atom selections for use in visualisation tools or other analysis programs.
It provides a fast framework for complex analysis tasks,
as well as flexible tooling to construct your own analyses.

Why MDAnalysis?

The typical use case for MDAnalysis is to manipulate or analyse molecular dynamics trajectories. The library focuses on two key features:

	Memory efficiency.
The size of trajectory data can quickly overwhelm the memory resources of your computer.
MDAnalysis typically accesses your trajectory by only loading data for one frame at a time.
This allows you to work with trajectories of any length without difficulty.

	Flexibility.
MDAnalysis is constructed to be easily extensible.
If an analysis method is not already available in MDAnalysis,
you can write your own custom trajectory analysis with the building blocks provided.
If you need to read in a custom file format, you can construct your own Reader or Parser that will automatically get picked up when MDAnalysis is constructing a Universe from files. You can create and add your own labels for atoms, residues, or segments (called topology attributes) and relationships between atoms (e.g. bonds, angles).

Participating

MDAnalysis welcomes all contributions from its users. There are many ways you can help improve MDAnalysis, from asking questions on the mdnalysis-discussion [https://groups.google.com/group/mdnalysis-discussion] mailing list, to raising issues on the Issue Tracker [https://github.com/MDAnalysis/mdanalysis/issues], to adding your own code. Please see Contributing to MDAnalysis for an introduction and guide to contributing to the code and documentation.

Important

Ground rules and expectations

The MDAnalysis community subscribes to a Code of Conduct [https://www.mdanalysis.org/pages/conduct/]. By participating in this project and community, you agree to abide by its terms. Please read it.

In general, we expect you to be kind and thoughtful in your conversations around this project. We all come from different backgrounds and projects, which means we will not always agree. Try to listen and understand why others hold their viewpoints in discussions. Rather than blaming each other, focus on helping to resolve issues and learning from mistakes.

Communications

Questions and discussions about MDAnalysis take place on the mailing lists and this repository’s Issue Tracker [https://github.com/MDAnalysis/mdanalysis/issues]. Anybody is welcome to join these conversations. Please ask questions about the usage of MDAnalysis on the mdnalysis-discussion [https://groups.google.com/group/mdnalysis-discussion] mailing list, and report problems on the Issue Tracker [https://github.com/MDAnalysis/mdanalysis/issues].

Wherever possible, do not take these conversations to private channels, including contacting the maintainers directly. Keeping communication public means everybody can benefit and learn from the conversation.

Installation

The latest versions of MDAnalysis can be installed using conda or pip.
Currently, the conda releases only support serial calculations.
If you plan to use the parallel OpenMP algorithms, you need to
install MDAnalysis with pip and have a working OpenMP installation.

MDAnalysis has a separate test suite MDAnalysisTests that is required to run the test cases and examples.
The test files change less frequently, take up around 90 MB of space,
and are not needed for daily use of MDAnalysis. However, they are often used in examples,
including many in this User Guide. If you are not interested in developing
MDAnalysis or using the example files, you most likely don’t need the tests. If you want to
run examples in the User Guide, install the tests.
The tests are distributed separately from the main package.

conda

To install the latest stable version of MDAnalysis via conda, use the following command. This installs all dependencies needed for full analysis functionality (excluding external programs such as HOLE [http://www.holeprogram.org]):

conda install -c conda-forge mdanalysis

To upgrade:

conda update mdanalysis

To install the tests:

conda install -c conda-forge MDAnalysisTests

pip

The following command will install or upgrade the latest stable version of MDAnalysis via pip, with core dependencies. This means that some packages required by specific analysis modules will not be installed.

pip install --upgrade MDAnalysis

If you need to install a fully-featured MDAnalysis, add the analysis tag. As with conda, this will not install external programs such as HOLE [http://www.holeprogram.org].

pip install --upgrade MDAnalysis[analysis]

To install/upgrade tests:

pip install --upgrade MDAnalysisTests

Development versions

To install development versions of MDAnalysis, you can compile it from source.

git clone https://github.com/MDAnalysis/mdanalysis
cd mdanalysis
pip install -e .

In order to install from source, you will need numpy and cython. See Creating a development environment for instructions on how to create a full development environment.

Testing

The tests rely on the pytest and numpy packages, which must also be installed. Run tests with:

pytest --disable-pytest-warnings --pyargs MDAnalysisTests

All tests should pass (i.e. no FAIL, ERROR); SKIPPED or XFAIL are ok. If anything fails or gives an error,
ask on the user mailing list [http://users.mdanalysis.org/] or raise an issue [https://github.com/MDAnalysis/mdanalysis/issues].

Testing MDAnalysis can take a while, as there are quite a few tests.
The plugin pytest-xdist [https://github.com/pytest-dev/pytest-xdist] can be used to run tests in parallel.

pip install pytest-xdist
pytest --disable-pytest-warnings --pyargs MDAnalysisTests --numprocesses 4

Additional datasets

MDAnalysisData is an additional package with datasets that can be used in example tutorials. You can install it with conda or pip:

conda
conda install -c conda-forge mdanalysisdata
pip
pip install --upgrade MDAnalysisData

This installation does not download all the datasets; instead, the datasets are cached when they are first downloaded using a Python command.

Quick start guide

MDAnalysis version: ≥ 0.18.0

Last updated: November 2019

This guide is designed as a basic introduction to MDAnalysis to get you up and running. You can see more complex tasks in our Example notebooks [https://mdanalysis.org/UserGuide/examples/README.html]. This page outlines how to:

	load a molecular dynamics structure or trajectory

	work with AtomGroups, a central data structure in MDAnalysis

	work with a trajectory

	write out coordinates

	use the analysis algorithms in MDAnalysis

	correct and automated citation of MDAnalysis and algorithms

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD, GRO, XTC

print(mda.Universe(PSF, DCD))
print(mda.__version__)

<Universe with 3341 atoms>
0.20.1

This tutorial assumes that you already have MDAnalysis installed. Running the cell above should give something similar to:

<Universe with 3341 atoms>
0.20.1

If you get an error message, you need to install MDAnalysis. If your version is under 0.18.0, you need to upgrade MDAnalysis. Instructions for both are here. [https://www.mdanalysis.org/UserGuide/installation] After installing, restart this notebook.

Overview

MDAnalysis is a Python package that provides tools to access and analyse data in molecular dynamics trajectories. Several key data structures form the backbone of MDAnalysis.

	A molecular system consists of particles. A particle is represented as an Atom object, even if it is a coarse-grained bead.

	Atoms are grouped into AtomGroup [https://www.mdanalysis.org/UserGuide/atomgroup]s. The AtomGroup is probably the most important class in MDAnalysis, as almost everything can be accessed through it. See Working with atoms below.

	A Universe contains all the particles in a molecular system in an AtomGroup accessible at the .atoms attribute, and combines it with a trajectory at .trajectory.

A fundamental concept in MDAnalysis is that at any one time, only one time frame of the trajectory is being accessed. The trajectory attribute of a Universe is usually a file reader. Think of the trajectory as a function \(X(t)\) of the frame index \(t\) that only makes the data from this specific frame available. This structure is important because it allows MDAnalysis to work with trajectory files too large to fit into the computer’s memory.

Loading a structure or trajectory

Working with MDAnalysis typically starts with loading data into a Universe, the central data structure in MDAnalysis. The user guide [https://www.mdanalysis.org/UserGuide/universe] has a complete explanation of ways to create and manipulate a Universe.

The first arguments for creating a Universe are topology and trajectory files.

	A topology file is always required for loading data into a Universe. A topology file lists atoms, residues, and their connectivity. MDAnalysis accepts the PSF, PDB, CRD, and GRO formats.

	A topology file can then be followed by any number of trajectory files. A trajectory file contains a list of coordinates in the order defined in the topology. If no trajectory files are given, then only a structure is loaded. If multiple trajectory files are given, the trajectories are concatenated in the given order. MDAnalysis accepts single frames (e.g. PDB, CRD, GRO) and timeseries data (e.g. DCD, XTC, TRR, XYZ).

[2]:

psf = mda.Universe(PSF)
print(psf)
print(hasattr(psf, 'trajectory'))

<Universe with 3341 atoms>
False

As PSF files don’t contain any coordinate information and no trajectory file has been loaded, the psf universe does not contain a trajectory. If the topology file does contain coordinate information, a trajectory of 1 frame is created.

[3]:

gro = mda.Universe(GRO)
print(gro)
print(len(gro.trajectory))

<Universe with 47681 atoms>
1

For the remainder of this guide we will work with the universe u, created below. This is a simulation where the enzyme adenylate kinase samples a transition from a closed to an open conformation (Beckstein *et al.*, 2009) [https://doi.org/10.1016/j.jmb.2009.09.009].

[4]:

u = mda.Universe(PSF, DCD)
print(u)
print(len(u.trajectory))

<Universe with 3341 atoms>
98

Note

The MDAnalysis test suite is packaged with a bunch of test files and trajectories, which are named after their file format. We are using these files throughout this guide for convenience. To analyse your own files, simply replace the PSF and DCD above with paths to your own files. For example:

structure_only = mda.Universe("my_pdb_file.pdb")

Working with groups of atoms

Most analysis requires creating and working with an AtomGroup, a collection of Atoms. For convenience, you can also work with chemically meaningful groups of Atoms such as a Residue or a Segment. These come with analogous containers to AtomGroup: ResidueGroup and SegmentGroup. For instance, the .residues attribute of a Universe returns a ResidueGroup.

[5]:

print(u.residues)

<ResidueGroup [<Residue MET, 1>, <Residue ARG, 2>, <Residue ILE, 3>, ..., <Residue ILE, 212>, <Residue LEU, 213>, <Residue GLY, 214>]>

Selecting atoms

The easiest way to access the particles of your Universe is with the atoms attribute:

[6]:

u.atoms

[6]:

<AtomGroup with 3341 atoms>

This returns an AtomGroup, which can be thought of as a list of Atom objects. Most analysis involves working with groups of atoms in AtomGroups. AtomGroups can easily be created by slicing another AtomGroup. For example, the below slice returns the last five atoms.

[7]:

last_five = u.atoms[-5:]
print(last_five)

<AtomGroup [<Atom 3337: HA1 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom 3338: HA2 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom 3339: C of type 32 of resname GLY, resid 214 and segid 4AKE>, <Atom 3340: OT1 of type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3341: OT2 of type 72 of resname GLY, resid 214 and segid 4AKE>]>

MDAnalysis supports fancy indexing: passing an array or list of indices to get a new AtomGroup with the atoms at those indices in the old AtomGroup.

[8]:

print(last_five[[0, 3, -1, 1, 3, 0]])

<AtomGroup [<Atom 3337: HA1 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom 3340: OT1 of type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3341: OT2 of type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3338: HA2 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom 3340: OT1 of type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3337: HA1 of type 6 of resname GLY, resid 214 and segid 4AKE>]>

MDAnalysis has also implemented a powerful atom selection language [https://www.mdanalysis.org/UserGuide/selections] that is similar to existing languages in VMD [https://www.ks.uiuc.edu/Research/vmd/], PyMol [https://pymol.org/2/], and other packages. This is available with the .select_atoms() function of an AtomGroup or Universe instance:

[9]:

print(u.select_atoms('resname ASP or resname GLU'))

<AtomGroup [<Atom 318: N of type 54 of resname GLU, resid 22 and segid 4AKE>, <Atom 319: HN of type 1 of resname GLU, resid 22 and segid 4AKE>, <Atom 320: CA of type 22 of resname GLU, resid 22 and segid 4AKE>, ..., <Atom 3271: OE2 of type 72 of resname GLU, resid 210 and segid 4AKE>, <Atom 3272: C of type 20 of resname GLU, resid 210 and segid 4AKE>, <Atom 3273: O of type 70 of resname GLU, resid 210 and segid 4AKE>]>

Numerical ranges can be written as first-last or first:last where the range is inclusive. Note that in slicing, the last index is not included.

[10]:

print(u.select_atoms('resid 50-100').n_residues)
print(u.residues[50:100].n_residues)

51
50

Selections can also be combined with boolean operators, and allow wildcards.

For example, the command below selects the \(C_{\alpha}\) atoms of glutamic acid and histidine in the first 100 residues of the protein. Glutamic acid is typically named “GLU”, but histidine can be named “HIS”, “HSD”, or “HSE” depending on its protonation state and the force field used.

[11]:

u.select_atoms("(resname GLU or resname HS*) and name CA and (resid 1:100)")

[11]:

<AtomGroup with 6 atoms>

Note

An AtomGroup created from a selection is sorted and duplicate elements are removed. This is not true for an AtomGroup produced by slicing. Thus, slicing can be used when the order of atoms is crucial.

The user guide [https://www.mdanalysis.org/UserGuide/atomgroup] has a complete rundown of creating AtomGroups through indexing, selection language, and set methods.

Getting atom information from AtomGroups

An AtomGroup can tell you information about the atoms inside it with a number of convenient attributes.

[12]:

print(u.atoms[:20].names)

['N' 'HT1' 'HT2' 'HT3' 'CA' 'HA' 'CB' 'HB1' 'HB2' 'CG' 'HG1' 'HG2' 'SD'
 'CE' 'HE1' 'HE2' 'HE3' 'C' 'O' 'N']

[13]:

print(u.atoms[50:70].masses)

[1.008 1.008 1.008 12.011 1.008 1.008 12.011 1.008 1.008 1.008
 12.011 15.999 14.007 1.008 12.011 1.008 12.011 1.008 12.011 1.008]

It also knows which residues and segments the atoms belong to. The .residues and .segments return a ResidueGroup and SegmentGroup, respectively.

[14]:

print(u.atoms[:20].residues)
print(u.atoms[-20:].segments)

<ResidueGroup [<Residue MET, 1>, <Residue ARG, 2>]>
<SegmentGroup [<Segment 4AKE>]>

Note that there are no duplicates in the ResidueGroup and SegmentGroup above. To get residue attributes atom-wise, you can access them directly through AtomGroup.

[15]:

print(u.atoms[:20].resnames)

['MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET'
 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'ARG']

You can group atoms together by topology attributes.

For example, to group atoms with the same residue name and mass together:

[16]:

near_met = u.select_atoms('not resname MET and (around 2 resname MET)')
near_met.groupby(['resnames', 'names'])

[16]:

{('ALA', 'HN'): <AtomGroup with 2 atoms>,
 ('ALA', 'C'): <AtomGroup with 1 atom>,
 ('ASP', 'N'): <AtomGroup with 1 atom>,
 ('ASP', 'C'): <AtomGroup with 1 atom>,
 ('THR', 'N'): <AtomGroup with 1 atom>,
 ('GLU', 'N'): <AtomGroup with 1 atom>,
 ('ILE', 'C'): <AtomGroup with 2 atoms>,
 ('LEU', 'N'): <AtomGroup with 1 atom>,
 ('GLN', 'C'): <AtomGroup with 1 atom>,
 ('ASN', 'O'): <AtomGroup with 1 atom>,
 ('LYS', 'N'): <AtomGroup with 1 atom>,
 ('ARG', 'N'): <AtomGroup with 1 atom>}

A complete list of topology attributes can be found in the user guide. [https://www.mdanalysis.org/UserGuide/topology_system.html#topology-attributes]

AtomGroup positions and methods

The .positions attribute is probably the most important information you can get from an AtomGroup: a numpy.ndarray of coordinates, with the shape (n_atoms, 3).

[17]:

ca = u.select_atoms('resid 1-5 and name CA')
print(ca.positions)
print(ca.positions.shape)

[[11.664622 8.393473 -8.983231]
 [11.414839 5.4344215 -6.5134845]
 [8.959755 5.612923 -3.6132305]
 [8.290068 3.075991 -0.79665166]
 [5.011126 3.7638984 1.130355]]
(5, 3)

A number of other quantities have been defined for an AtomGroup, including:

	.center_of_mass()

	.center_of_geometry()

	.total_mass()

	.total_charge()

	.radius_of_gyration()

	.bsphere() (the bounding sphere of the selection)

See the user guide [https://www.mdanalysis.org/UserGuide/topology_system.html#topology-specific-methods] for a complete list and description of AtomGroup methods.

[18]:

print(ca.center_of_mass())

[9.06808195 5.25614133 -3.75524844]

Note

The .center_of_mass() function, like many of the analysis modules in MDAnalysis, relies on having accurate mass properties available. `Particle masses may not always be available or accurate! <https://www.mdanalysis.org/UserGuide/formats/guessing.html#masses>`__

Currently, MDAnalysis assigns masses to particles based on their element or ‘atom type’, which is guessed from the particle name. If MDAnalysis guesses incorrectly (e.g. a calcium atom called CA is treated as a \(C_{\alpha}\)), the mass of that atom will be inaccurate. If MDAnalysis has no idea what the particle is (e.g. coarse-grained beads), it will raise a warning, and give that particle a mass of 0.

To be certain that MDAnalysis is using the correct masses, you can set them manually.

MDAnalysis can also create topology geometries [https://www.mdanalysis.org/UserGuide/topology_system.html#topology-objects] such as bonds, angles, dihedral angles, and improper angles from an AtomGroup. This AtomGroup has a special requirement: only the atoms involved in the geometry can be in the group. For example, an AtomGroup used to create a bond can only have 2 atoms in it; an AtomGroup used to create a dihedral or improper angle must have 4 atoms.

[19]:

nhh = u.atoms[:3]
print(nhh.names)

['N' 'HT1' 'HT2']

After a topology object such as an angle is created, the value of the angle (in degrees) can be calculated based on the positions of the atoms.

[20]:

angle_nhh = nhh.angle
print(angle_nhh.value())

37.99234750892497

Note that the order of the atoms matters for angles, dihedrals, and impropers. The value returned for an angle is the angle between first and third atom, with the apex at the second. Fancy indexing is one way to get an ordered AtomGroup.

 3
 /
 /
2------1

[21]:

hnh = u.atoms[[1, 0, 2]]
print(hnh.names)

['HT1' 'N' 'HT2']

[22]:

angle_hnh = hnh.angle
print(angle_hnh.value())

106.20364651944931

Working with trajectories

The trajectory of a Universe contains the changing coordinate information [https://mdanalysis.org/UserGuide/trajectories/trajectories.html]. The number of frames in a trajectory is its length:

[23]:

print(len(u.trajectory))

98

The standard way to assess the information of each frame in a trajectory is to iterate over it. When the timestep changes, the universe only contains information associated with that timestep.

[24]:

for ts in u.trajectory[:20]:
 time = u.trajectory.time
 rgyr = u.atoms.radius_of_gyration()
 print("Frame: {:3d}, Time: {:4.0f} ps, Rgyr: {:.4f} A".format(ts.frame, time, rgyr))

Frame: 0, Time: 1 ps, Rgyr: 16.6690 A
Frame: 1, Time: 2 ps, Rgyr: 16.6732 A
Frame: 2, Time: 3 ps, Rgyr: 16.7315 A
Frame: 3, Time: 4 ps, Rgyr: 16.7223 A
Frame: 4, Time: 5 ps, Rgyr: 16.7440 A
Frame: 5, Time: 6 ps, Rgyr: 16.7185 A
Frame: 6, Time: 7 ps, Rgyr: 16.7741 A
Frame: 7, Time: 8 ps, Rgyr: 16.7764 A
Frame: 8, Time: 9 ps, Rgyr: 16.7894 A
Frame: 9, Time: 10 ps, Rgyr: 16.8289 A
Frame: 10, Time: 11 ps, Rgyr: 16.8521 A
Frame: 11, Time: 12 ps, Rgyr: 16.8549 A
Frame: 12, Time: 13 ps, Rgyr: 16.8723 A
Frame: 13, Time: 14 ps, Rgyr: 16.9108 A
Frame: 14, Time: 15 ps, Rgyr: 16.9494 A
Frame: 15, Time: 16 ps, Rgyr: 16.9810 A
Frame: 16, Time: 17 ps, Rgyr: 17.0033 A
Frame: 17, Time: 18 ps, Rgyr: 17.0196 A
Frame: 18, Time: 19 ps, Rgyr: 17.0784 A
Frame: 19, Time: 20 ps, Rgyr: 17.1265 A

After iteration, the trajectory ‘resets’ back to the first frame. Please see the user guide [https://mdanalysis.org/UserGuide/trajectories/trajectories.html] for more information.

[25]:

print(u.trajectory.frame)

0

You can set the timestep of the trajectory with the frame index:

[26]:

print(u.trajectory[10].frame)

10

This persists until the timestep is next changed.

[27]:

frame = u.trajectory.frame
time = u.trajectory.time
rgyr = u.atoms.radius_of_gyration()
print("Frame: {:3d}, Time: {:4.0f} ps, Rgyr: {:.4f} A".format(frame, time, rgyr))

Frame: 10, Time: 11 ps, Rgyr: 16.8521 A

Generally, trajectory analysis first collects frame-wise data in a list.

[28]:

rgyr = []
time = []
protein = u.select_atoms("protein")
for ts in u.trajectory:
 time.append(u.trajectory.time)
 rgyr.append(protein.radius_of_gyration())

This can then be converted into other data structures, such as a numpy array or a pandas DataFrame. It can be plotted (as below), or used for further analysis.

The following section requires the pandas [https://pandas.pydata.org] package (installation: conda install pandas or pip install pandas) and matplotlib [https://matplotlib.org/] (installation: conda install matplotlib or pip install matplotlib)

[29]:

import pandas as pd
rgyr_df = pd.DataFrame(rgyr, columns=['Radius of gyration (A)'], index=time)
rgyr_df.index.name = 'Time (ps)'

rgyr_df.head()

[29]:

 Frequently asked questions

Frequently asked questions

Trajectories

Why do the atom positions change over trajectories?

A fundamental concept in MDAnalysis is that at any one time,
only one time frame of the trajectory is being accessed. The
trajectory attribute of a Universe is actually (usually) a file reader.
Think of the trajectory as a function \(X(t)\) of the frame index \(t\)
that makes the data from this specific frame available. This structure is important
because it allows MDAnalysis to work with trajectory files too large to fit
into the computer’s memory. See Trajectories for more information.

 Examples

Examples

MDAnalysis maintains a collection of Jupyter notebooks as examples of what the code can do. Each notebook can be downloaded from the source repository to run on your own computer, or viewed as an online tutorial on the user guide.

General

	Quick start guide

	Constructing, modifying, and adding to a Universe

	Transformations

Analysis

	Alignments and RMS fitting
	Aligning a structure to another

	Aligning a trajectory to itself

	Aligning a trajectory to a reference

	Calculating the root mean square deviation of atomic structures

	Calculating the pairwise RMSD of a trajectory

	Distances and contacts
	Atom-wise distances between matching AtomGroups

	All distances between two selections

	All distances within a selection

	Fraction of native contacts over a trajectory

	Q1 vs Q2 contact analysis

	Contact analysis: number of contacts within a cutoff

	Write your own contacts analysis method

	Trajectory similarity
	Comparing the geometric similarity of trajectories

	Calculating the Harmonic Ensemble Similarity between ensembles

	Calculating the Clustering Ensemble Similarity between ensembles

	Calculating the Dimension Reduction Ensemble Similarity between ensembles

	Evaluating convergence

	Structure
	Elastic network analysis

	Average radial distribution functions

	Calculating the RDF atom-to-atom

	Protein dihedral angle analysis

	Dimension reduction
	Principal component analysis of a trajectory

	Polymers and membranes
	Determining the persistence length of a polymer

	Analysing pore dimensions with HOLE

	Volumetric analyses
	Computing mass and charge density on each axis

 Quick start guide

Quick start guide

MDAnalysis version: ≥ 0.18.0

Last updated: November 2019

This guide is designed as a basic introduction to MDAnalysis to get you up and running. You can see more complex tasks in our Example notebooks [https://mdanalysis.org/UserGuide/examples/README.html]. This page outlines how to:

	load a molecular dynamics structure or trajectory

	work with AtomGroups, a central data structure in MDAnalysis

	work with a trajectory

	write out coordinates

	use the analysis algorithms in MDAnalysis

	correct and automated citation of MDAnalysis and algorithms

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD, GRO, XTC

print(mda.Universe(PSF, DCD))
print(mda.__version__)

<Universe with 3341 atoms>
0.20.1

This tutorial assumes that you already have MDAnalysis installed. Running the cell above should give something similar to:

<Universe with 3341 atoms>
0.20.1

If you get an error message, you need to install MDAnalysis. If your version is under 0.18.0, you need to upgrade MDAnalysis. Instructions for both are here. [https://www.mdanalysis.org/UserGuide/installation] After installing, restart this notebook.

Overview

MDAnalysis is a Python package that provides tools to access and analyse data in molecular dynamics trajectories. Several key data structures form the backbone of MDAnalysis.

	A molecular system consists of particles. A particle is represented as an Atom object, even if it is a coarse-grained bead.

	Atoms are grouped into AtomGroup [https://www.mdanalysis.org/UserGuide/atomgroup]s. The AtomGroup is probably the most important class in MDAnalysis, as almost everything can be accessed through it. See Working with atoms below.

	A Universe contains all the particles in a molecular system in an AtomGroup accessible at the .atoms attribute, and combines it with a trajectory at .trajectory.

A fundamental concept in MDAnalysis is that at any one time, only one time frame of the trajectory is being accessed. The trajectory attribute of a Universe is usually a file reader. Think of the trajectory as a function \(X(t)\) of the frame index \(t\) that only makes the data from this specific frame available. This structure is important because it allows MDAnalysis to work with trajectory files too large to fit into the computer’s memory.

Loading a structure or trajectory

Working with MDAnalysis typically starts with loading data into a Universe, the central data structure in MDAnalysis. The user guide [https://www.mdanalysis.org/UserGuide/universe] has a complete explanation of ways to create and manipulate a Universe.

The first arguments for creating a Universe are topology and trajectory files.

	A topology file is always required for loading data into a Universe. A topology file lists atoms, residues, and their connectivity. MDAnalysis accepts the PSF, PDB, CRD, and GRO formats.

	A topology file can then be followed by any number of trajectory files. A trajectory file contains a list of coordinates in the order defined in the topology. If no trajectory files are given, then only a structure is loaded. If multiple trajectory files are given, the trajectories are concatenated in the given order. MDAnalysis accepts single frames (e.g. PDB, CRD, GRO) and timeseries data (e.g. DCD, XTC, TRR, XYZ).

[2]:

psf = mda.Universe(PSF)
print(psf)
print(hasattr(psf, 'trajectory'))

<Universe with 3341 atoms>
False

As PSF files don’t contain any coordinate information and no trajectory file has been loaded, the psf universe does not contain a trajectory. If the topology file does contain coordinate information, a trajectory of 1 frame is created.

[3]:

gro = mda.Universe(GRO)
print(gro)
print(len(gro.trajectory))

<Universe with 47681 atoms>
1

For the remainder of this guide we will work with the universe u, created below. This is a simulation where the enzyme adenylate kinase samples a transition from a closed to an open conformation (Beckstein *et al.*, 2009) [https://doi.org/10.1016/j.jmb.2009.09.009].

[4]:

u = mda.Universe(PSF, DCD)
print(u)
print(len(u.trajectory))

<Universe with 3341 atoms>
98

Note

The MDAnalysis test suite is packaged with a bunch of test files and trajectories, which are named after their file format. We are using these files throughout this guide for convenience. To analyse your own files, simply replace the PSF and DCD above with paths to your own files. For example:

structure_only = mda.Universe("my_pdb_file.pdb")

Working with groups of atoms

Most analysis requires creating and working with an AtomGroup, a collection of Atoms. For convenience, you can also work with chemically meaningful groups of Atoms such as a Residue or a Segment. These come with analogous containers to AtomGroup: ResidueGroup and SegmentGroup. For instance, the .residues attribute of a Universe returns a ResidueGroup.

[5]:

print(u.residues)

<ResidueGroup [<Residue MET, 1>, <Residue ARG, 2>, <Residue ILE, 3>, ..., <Residue ILE, 212>, <Residue LEU, 213>, <Residue GLY, 214>]>

Selecting atoms

The easiest way to access the particles of your Universe is with the atoms attribute:

[6]:

u.atoms

[6]:

<AtomGroup with 3341 atoms>

This returns an AtomGroup, which can be thought of as a list of Atom objects. Most analysis involves working with groups of atoms in AtomGroups. AtomGroups can easily be created by slicing another AtomGroup. For example, the below slice returns the last five atoms.

[7]:

last_five = u.atoms[-5:]
print(last_five)

<AtomGroup [<Atom 3337: HA1 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom 3338: HA2 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom 3339: C of type 32 of resname GLY, resid 214 and segid 4AKE>, <Atom 3340: OT1 of type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3341: OT2 of type 72 of resname GLY, resid 214 and segid 4AKE>]>

MDAnalysis supports fancy indexing: passing an array or list of indices to get a new AtomGroup with the atoms at those indices in the old AtomGroup.

[8]:

print(last_five[[0, 3, -1, 1, 3, 0]])

<AtomGroup [<Atom 3337: HA1 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom 3340: OT1 of type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3341: OT2 of type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3338: HA2 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom 3340: OT1 of type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3337: HA1 of type 6 of resname GLY, resid 214 and segid 4AKE>]>

MDAnalysis has also implemented a powerful atom selection language [https://www.mdanalysis.org/UserGuide/selections] that is similar to existing languages in VMD [https://www.ks.uiuc.edu/Research/vmd/], PyMol [https://pymol.org/2/], and other packages. This is available with the .select_atoms() function of an AtomGroup or Universe instance:

[9]:

print(u.select_atoms('resname ASP or resname GLU'))

<AtomGroup [<Atom 318: N of type 54 of resname GLU, resid 22 and segid 4AKE>, <Atom 319: HN of type 1 of resname GLU, resid 22 and segid 4AKE>, <Atom 320: CA of type 22 of resname GLU, resid 22 and segid 4AKE>, ..., <Atom 3271: OE2 of type 72 of resname GLU, resid 210 and segid 4AKE>, <Atom 3272: C of type 20 of resname GLU, resid 210 and segid 4AKE>, <Atom 3273: O of type 70 of resname GLU, resid 210 and segid 4AKE>]>

Numerical ranges can be written as first-last or first:last where the range is inclusive. Note that in slicing, the last index is not included.

[10]:

print(u.select_atoms('resid 50-100').n_residues)
print(u.residues[50:100].n_residues)

51
50

Selections can also be combined with boolean operators, and allow wildcards.

For example, the command below selects the \(C_{\alpha}\) atoms of glutamic acid and histidine in the first 100 residues of the protein. Glutamic acid is typically named “GLU”, but histidine can be named “HIS”, “HSD”, or “HSE” depending on its protonation state and the force field used.

[11]:

u.select_atoms("(resname GLU or resname HS*) and name CA and (resid 1:100)")

[11]:

<AtomGroup with 6 atoms>

Note

An AtomGroup created from a selection is sorted and duplicate elements are removed. This is not true for an AtomGroup produced by slicing. Thus, slicing can be used when the order of atoms is crucial.

The user guide [https://www.mdanalysis.org/UserGuide/atomgroup] has a complete rundown of creating AtomGroups through indexing, selection language, and set methods.

Getting atom information from AtomGroups

An AtomGroup can tell you information about the atoms inside it with a number of convenient attributes.

[12]:

print(u.atoms[:20].names)

['N' 'HT1' 'HT2' 'HT3' 'CA' 'HA' 'CB' 'HB1' 'HB2' 'CG' 'HG1' 'HG2' 'SD'
 'CE' 'HE1' 'HE2' 'HE3' 'C' 'O' 'N']

[13]:

print(u.atoms[50:70].masses)

[1.008 1.008 1.008 12.011 1.008 1.008 12.011 1.008 1.008 1.008
 12.011 15.999 14.007 1.008 12.011 1.008 12.011 1.008 12.011 1.008]

It also knows which residues and segments the atoms belong to. The .residues and .segments return a ResidueGroup and SegmentGroup, respectively.

[14]:

print(u.atoms[:20].residues)
print(u.atoms[-20:].segments)

<ResidueGroup [<Residue MET, 1>, <Residue ARG, 2>]>
<SegmentGroup [<Segment 4AKE>]>

Note that there are no duplicates in the ResidueGroup and SegmentGroup above. To get residue attributes atom-wise, you can access them directly through AtomGroup.

[15]:

print(u.atoms[:20].resnames)

['MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET'
 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'MET' 'ARG']

You can group atoms together by topology attributes.

For example, to group atoms with the same residue name and mass together:

[16]:

near_met = u.select_atoms('not resname MET and (around 2 resname MET)')
near_met.groupby(['resnames', 'names'])

[16]:

{('ALA', 'HN'): <AtomGroup with 2 atoms>,
 ('ALA', 'C'): <AtomGroup with 1 atom>,
 ('ASP', 'N'): <AtomGroup with 1 atom>,
 ('ASP', 'C'): <AtomGroup with 1 atom>,
 ('THR', 'N'): <AtomGroup with 1 atom>,
 ('GLU', 'N'): <AtomGroup with 1 atom>,
 ('ILE', 'C'): <AtomGroup with 2 atoms>,
 ('LEU', 'N'): <AtomGroup with 1 atom>,
 ('GLN', 'C'): <AtomGroup with 1 atom>,
 ('ASN', 'O'): <AtomGroup with 1 atom>,
 ('LYS', 'N'): <AtomGroup with 1 atom>,
 ('ARG', 'N'): <AtomGroup with 1 atom>}

A complete list of topology attributes can be found in the user guide. [https://www.mdanalysis.org/UserGuide/topology_system.html#topology-attributes]

AtomGroup positions and methods

The .positions attribute is probably the most important information you can get from an AtomGroup: a numpy.ndarray of coordinates, with the shape (n_atoms, 3).

[17]:

ca = u.select_atoms('resid 1-5 and name CA')
print(ca.positions)
print(ca.positions.shape)

[[11.664622 8.393473 -8.983231]
 [11.414839 5.4344215 -6.5134845]
 [8.959755 5.612923 -3.6132305]
 [8.290068 3.075991 -0.79665166]
 [5.011126 3.7638984 1.130355]]
(5, 3)

A number of other quantities have been defined for an AtomGroup, including:

	.center_of_mass()

	.center_of_geometry()

	.total_mass()

	.total_charge()

	.radius_of_gyration()

	.bsphere() (the bounding sphere of the selection)

See the user guide [https://www.mdanalysis.org/UserGuide/topology_system.html#topology-specific-methods] for a complete list and description of AtomGroup methods.

[18]:

print(ca.center_of_mass())

[9.06808195 5.25614133 -3.75524844]

Note

The .center_of_mass() function, like many of the analysis modules in MDAnalysis, relies on having accurate mass properties available. `Particle masses may not always be available or accurate! <https://www.mdanalysis.org/UserGuide/formats/guessing.html#masses>`__

Currently, MDAnalysis assigns masses to particles based on their element or ‘atom type’, which is guessed from the particle name. If MDAnalysis guesses incorrectly (e.g. a calcium atom called CA is treated as a \(C_{\alpha}\)), the mass of that atom will be inaccurate. If MDAnalysis has no idea what the particle is (e.g. coarse-grained beads), it will raise a warning, and give that particle a mass of 0.

To be certain that MDAnalysis is using the correct masses, you can set them manually.

MDAnalysis can also create topology geometries [https://www.mdanalysis.org/UserGuide/topology_system.html#topology-objects] such as bonds, angles, dihedral angles, and improper angles from an AtomGroup. This AtomGroup has a special requirement: only the atoms involved in the geometry can be in the group. For example, an AtomGroup used to create a bond can only have 2 atoms in it; an AtomGroup used to create a dihedral or improper angle must have 4 atoms.

[19]:

nhh = u.atoms[:3]
print(nhh.names)

['N' 'HT1' 'HT2']

After a topology object such as an angle is created, the value of the angle (in degrees) can be calculated based on the positions of the atoms.

[20]:

angle_nhh = nhh.angle
print(angle_nhh.value())

37.99234750892497

Note that the order of the atoms matters for angles, dihedrals, and impropers. The value returned for an angle is the angle between first and third atom, with the apex at the second. Fancy indexing is one way to get an ordered AtomGroup.

 3
 /
 /
2------1

[21]:

hnh = u.atoms[[1, 0, 2]]
print(hnh.names)

['HT1' 'N' 'HT2']

[22]:

angle_hnh = hnh.angle
print(angle_hnh.value())

106.20364651944931

Working with trajectories

The trajectory of a Universe contains the changing coordinate information [https://mdanalysis.org/UserGuide/trajectories/trajectories.html]. The number of frames in a trajectory is its length:

[23]:

print(len(u.trajectory))

98

The standard way to assess the information of each frame in a trajectory is to iterate over it. When the timestep changes, the universe only contains information associated with that timestep.

[24]:

for ts in u.trajectory[:20]:
 time = u.trajectory.time
 rgyr = u.atoms.radius_of_gyration()
 print("Frame: {:3d}, Time: {:4.0f} ps, Rgyr: {:.4f} A".format(ts.frame, time, rgyr))

Frame: 0, Time: 1 ps, Rgyr: 16.6690 A
Frame: 1, Time: 2 ps, Rgyr: 16.6732 A
Frame: 2, Time: 3 ps, Rgyr: 16.7315 A
Frame: 3, Time: 4 ps, Rgyr: 16.7223 A
Frame: 4, Time: 5 ps, Rgyr: 16.7440 A
Frame: 5, Time: 6 ps, Rgyr: 16.7185 A
Frame: 6, Time: 7 ps, Rgyr: 16.7741 A
Frame: 7, Time: 8 ps, Rgyr: 16.7764 A
Frame: 8, Time: 9 ps, Rgyr: 16.7894 A
Frame: 9, Time: 10 ps, Rgyr: 16.8289 A
Frame: 10, Time: 11 ps, Rgyr: 16.8521 A
Frame: 11, Time: 12 ps, Rgyr: 16.8549 A
Frame: 12, Time: 13 ps, Rgyr: 16.8723 A
Frame: 13, Time: 14 ps, Rgyr: 16.9108 A
Frame: 14, Time: 15 ps, Rgyr: 16.9494 A
Frame: 15, Time: 16 ps, Rgyr: 16.9810 A
Frame: 16, Time: 17 ps, Rgyr: 17.0033 A
Frame: 17, Time: 18 ps, Rgyr: 17.0196 A
Frame: 18, Time: 19 ps, Rgyr: 17.0784 A
Frame: 19, Time: 20 ps, Rgyr: 17.1265 A

After iteration, the trajectory ‘resets’ back to the first frame. Please see the user guide [https://mdanalysis.org/UserGuide/trajectories/trajectories.html] for more information.

[25]:

print(u.trajectory.frame)

0

You can set the timestep of the trajectory with the frame index:

[26]:

print(u.trajectory[10].frame)

10

This persists until the timestep is next changed.

[27]:

frame = u.trajectory.frame
time = u.trajectory.time
rgyr = u.atoms.radius_of_gyration()
print("Frame: {:3d}, Time: {:4.0f} ps, Rgyr: {:.4f} A".format(frame, time, rgyr))

Frame: 10, Time: 11 ps, Rgyr: 16.8521 A

Generally, trajectory analysis first collects frame-wise data in a list.

[28]:

rgyr = []
time = []
protein = u.select_atoms("protein")
for ts in u.trajectory:
 time.append(u.trajectory.time)
 rgyr.append(protein.radius_of_gyration())

This can then be converted into other data structures, such as a numpy array or a pandas DataFrame. It can be plotted (as below), or used for further analysis.

The following section requires the pandas [https://pandas.pydata.org] package (installation: conda install pandas or pip install pandas) and matplotlib [https://matplotlib.org/] (installation: conda install matplotlib or pip install matplotlib)

[29]:

import pandas as pd
rgyr_df = pd.DataFrame(rgyr, columns=['Radius of gyration (A)'], index=time)
rgyr_df.index.name = 'Time (ps)'

rgyr_df.head()

[29]:

 Constructing, modifying, and adding to a Universe

Constructing, modifying, and adding to a Universe

MDAnalysis version: ≥ 0.20.1

Last updated: November 2019

Sometimes you may want to construct a Universe from scratch, or add attributes that are not read from a file. For example, you may want to group a Universe into chains, or create custom segments for protein domains.

In this tutorial we:

	create a Universe consisting of water molecules

	merge this with a protein Universe loaded from a file

	create custom segments labeling protein domains

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PDB_small
import nglview as nv
import numpy as np
from IPython.core.display import Image

print("Using MDAnalysis version", mda.__version__)
print("Using NGLView version", nv.__version__)

Using MDAnalysis version 0.20.1
Using NGLView version 2.7.1

Creating and populating a Universe with water

Creating a blank Universe

The Universe.empty() method creates a blank Universe. The natoms (int) argument must be included. Optional arguments are:

	n_residues (int): number of residues

	n_segments (int): number of segments

	atom_resindex (list): list of resindices for each atom

	residue_segindex (list): list of segindices for each residue

	trajectory (bool): whether to attach a MemoryReader trajectory (default False)

	velocities (bool): whether to include velocities in the trajectory (default False)

	forces (bool): whether to include forces in the trajectory (default False)

We will create a Universe with 1000 water molecules.

[2]:

n_residues = 1000
n_atoms = n_residues * 3

create resindex list
resindices = np.repeat(range(n_residues), 3)
assert len(resindices) == n_atoms
print("resindices:", resindices[:10])

all water molecules belong to 1 segment
segindices = [0] * n_residues
print("segindices:", segindices[:10])

resindices: [0 0 0 1 1 1 2 2 2 3]
segindices: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[3]:

create the Universe
sol = mda.Universe.empty(n_atoms,
 n_residues=n_residues,
 atom_resindex=resindices,
 residue_segindex=segindices,
 trajectory=True) # necessary for adding coordinates
sol

[3]:

<Universe with 3000 atoms>

Adding topology attributes

There isn’t much we can do with our current Universe because MDAnalysis has no information on the particle elements, positions, etc. We can add relevant information manually using TopologyAttrs.

names

[4]:

sol.add_TopologyAttr('name', ['O', 'H1', 'H2']*n_residues)
sol.atoms.names

[4]:

array(['O', 'H1', 'H2', ..., 'O', 'H1', 'H2'], dtype=object)

elements (“types”)

Elements are typically contained in the type topology attribute.

[5]:

sol.add_TopologyAttr('type', ['O', 'H', 'H']*n_residues)
sol.atoms.types

[5]:

array(['O', 'H', 'H', ..., 'O', 'H', 'H'], dtype=object)

residue names (“resnames”)

[6]:

sol.add_TopologyAttr('resname', ['SOL']*n_residues)
sol.atoms.resnames

[6]:

array(['SOL', 'SOL', 'SOL', ..., 'SOL', 'SOL', 'SOL'], dtype=object)

residue counter (“resids”)

[7]:

sol.add_TopologyAttr('resid', list(range(1, n_residues+1)))
sol.atoms.resids

[7]:

array([1, 1, 1, ..., 1000, 1000, 1000])

segment/chain names (“segids”)

[8]:

sol.add_TopologyAttr('segid', ['SOL'])
sol.atoms.segids

[8]:

array(['SOL', 'SOL', 'SOL', ..., 'SOL', 'SOL', 'SOL'], dtype=object)

Adding positions

Positions can simply be assigned, without adding a topology attribute.

The O-H bond length in water is around 0.96 Angstrom, and the bond angle is 104.45°. We can first obtain a set of coordinates for one molecule, and then translate it for every water molecule.

[9]:

coordinates obtained by building a molecule in the program IQMol
h2o = np.array([[0, 0, 0], # oxygen
 [0.95908, -0.02691, 0.03231], # hydrogen
 [-0.28004, -0.58767, 0.70556]]) # hydrogen

[10]:

grid_size = 10
spacing = 8

coordinates = []

translating h2o coordinates around a grid
for i in range(n_residues):
 x = spacing * (i % grid_size)
 y = spacing * ((i // grid_size) % grid_size)
 z = spacing * (i // (grid_size * grid_size))

 xyz = np.array([x, y, z])

 coordinates.extend(h2o + xyz.T)

print(coordinates[:10])

[array([0., 0., 0.]), array([0.95908, -0.02691, 0.03231]), array([-0.28004, -0.58767, 0.70556]), array([8., 0., 0.]), array([8.95908, -0.02691, 0.03231]), array([7.71996, -0.58767, 0.70556]), array([16., 0., 0.]), array([16.95908, -0.02691, 0.03231]), array([15.71996, -0.58767, 0.70556]), array([24., 0., 0.])]

[11]:

coord_array = np.array(coordinates)
assert coord_array.shape == (n_atoms, 3)
sol.atoms.positions = coord_array

We can view the atoms with NGLView, a library for visualising molecules. It guesses bonds based on distance.

[12]:

sol_view = nv.show_mdanalysis(sol)
sol_view.add_representation('ball+stick', selection='all')
sol_view.center()
sol_view

Adding bonds

Currently, the sol universe doesn’t contain any bonds.

[13]:

assert not hasattr(sol, 'bonds')

They can be important for defining ‘fragments’, which are groups of atoms where every atom is connected by a bond to another atom in the group (i.e. what is commonly called a molecule). You can pass a list of tuples of atom indices to add bonds as a topology attribute.

[14]:

bonds = []
for o in range(0, n_atoms, 3):
 bonds.extend([(o, o+1), (o, o+2)])

bonds[:10]

[14]:

[(0, 1),
 (0, 2),
 (3, 4),
 (3, 5),
 (6, 7),
 (6, 8),
 (9, 10),
 (9, 11),
 (12, 13),
 (12, 14)]

[15]:

sol.add_TopologyAttr('bonds', bonds)
sol.bonds

[15]:

<TopologyGroup containing 2000 bonds>

The bonds associated with each atom or the bonds within an AtomGroup can be accessed with the bonds attribute:

[16]:

print(sol.atoms[0].bonds)
print(sol.atoms[-10:].bonds)

<TopologyGroup containing 2 bonds>
<TopologyGroup containing 7 bonds>

Merging with a protein

Now we can merge the water with a protein to create a combined system by using MDAnalysis.Merge to combine AtomGroup instances.

The protein is adenylate kinase (AdK), a phosphotransferase enzyme. [1]

[17]:

protein = mda.Universe(PDB_small)
nv.show_mdanalysis(protein)

I will translate the centers of both systems to the origin, so they can overlap in space.

[18]:

cog = sol.atoms.center_of_geometry()
print('Original solvent center of geometry: ', cog)
sol.atoms.positions -= cog
cog2 = sol.atoms.center_of_geometry()
print('New solvent center of geometry: ', cog2)

Original solvent center of geometry: [36.22634681 35.79514029 36.24595657]
New solvent center of geometry: [2.78155009e-07 -1.27156576e-07 3.97364299e-08]

[19]:

cog = protein.atoms.center_of_geometry()
print('Original solvent center of geometry: ', cog)
protein.atoms.positions -= cog
cog2 = protein.atoms.center_of_geometry()
print('New solvent center of geometry: ', cog2)

Original solvent center of geometry: [-3.66508082 9.60502842 14.33355791]
New solvent center of geometry: [8.30580288e-08 3.49225059e-08 2.51332265e-08]

[20]:

combined = mda.Merge(protein.atoms, sol.atoms)
combined_view = nv.show_mdanalysis(combined)
combined_view.add_representation("ball+stick", selection="not protein")
combined_view

Unfortunately, some water molecules overlap with the protein. We can create a new AtomGroup containing only the molecules where every atom is further away than 6 angstroms from the protein.

[21]:

no_overlap = combined.select_atoms("same resid as (not around 6 protein)")

With this AtomGroup, we can then construct a new Universe.

[22]:

u = mda.Merge(no_overlap)
view = nv.show_mdanalysis(u)
view.add_representation("ball+stick", selection="not protein")
view

Adding a new segment

Often you may want to assign atoms to a segment or chain – for example, adding chain IDs to a PDB file. This requires adding a new Segment with Universe.add_Segment.

Adenylate kinase has three domains: CORE, NMP, and LID. As shown in the picture below,[1] these have the residues:

	CORE: residues 1-29, 60-121, 160-214 (gray)

	NMP: residues 30-59 (blue)

	LID: residues 122-159 (yellow)

[23]:

u.segments.segids

[23]:

array(['4AKE', 'SOL'], dtype=object)

On examining the Universe, we can see that the protein and solvent are already divided into two segments: protein (‘4AKE’) and solvent (‘SOL’). We will add three more segments (CORE, NMP, and LID) and assign atoms to them.

First, add a Segment to the Universe with a segid. It will be empty:

[24]:

core_segment = u.add_Segment(segid='CORE')
core_segment.atoms

[24]:

<AtomGroup with 0 atoms>

Residues can’t be broken across segments. To put atoms in a segment, assign the segments attribute of their residues:

[25]:

core_atoms = u.select_atoms('resid 1:29 or resid 60:121 or resid 160-214')
core_atoms.residues.segments = core_segment
core_segment.atoms

[25]:

<AtomGroup with 2744 atoms>

[26]:

nmp_segment = u.add_Segment(segid='NMP')
lid_segment = u.add_Segment(segid='LID')

nmp_atoms = u.select_atoms('resid 30:59')
nmp_atoms.residues.segments = nmp_segment

lid_atoms = u.select_atoms('resid 122:159')
lid_atoms.residues.segments = lid_segment

We can check that we have the correct domains by visualising the protein. NGLView handles molecular structure by converting the MDAnalysis atoms into a PDB, where the chainID of each atom is the first letter of the segment that it belongs to.

[27]:

domain_view = nv.show_mdanalysis(u)
domain_view.color_by('chainID')
domain_view

Tiling into a larger Universe

We can use MDAnalysis to tile out a smaller Universe into a bigger one, similarly to editconf in GROMACS. To start off, we need to figure out the box size. The default in MDAnalysis is a zero vector. The first three numbers represent the length of each axis, and the last three represent the alpha, beta, and gamma angles of a triclinic box.

[28]:

u.dimensions

[28]:

array([0., 0., 0., 0., 0., 0.], dtype=float32)

We know that our system is cubic in shape, so we can assume angles of 90°. The difference between the lowest and highest x-axis positions is roughly 73 Angstroms.

[29]:

max(u.atoms.positions[:, 0]) - min(u.atoms.positions[:, 0])

[29]:

73.23912

So we can set our dimensions.

[30]:

u.dimensions = [73, 73, 73, 90, 90, 90]

To tile out a Universe, we need to copy it and translate the atoms by the box dimensions. We can then merge the cells into one large Universe and assign new dimensions.

[31]:

def tile_universe(universe, n_x, n_y, n_z):
 box = universe.dimensions[:3]
 copied = []
 for x in range(n_x):
 for y in range(n_y):
 for z in range(n_z):
 u_ = universe.copy()
 move_by = box*(x, y, z)
 u_.atoms.translate(move_by)
 copied.append(u_.atoms)

 new_universe = mda.Merge(*copied)
 new_box = box*(n_x, n_y, n_z)
 new_universe.dimensions = list(new_box) + [90]*3
 return new_universe

Here is a 2 x 2 x 2 version of our original unit cell:

[32]:

tiled = tile_universe(u, 2, 2, 2)
nv.show_mdanalysis(tiled)

References

[1]: Beckstein O, Denning EJ, Perilla JR, Woolf TB. Zipping and unzipping of adenylate kinase: atomistic insights into the ensemble of open<–>closed transitions. J Mol Biol. 2009;394(1):160–176. doi:10.1016/j.jmb.2009.09.009 [https://dx.doi.org/10.1016%2Fj.jmb.2009.09.009]

Acknowledgments

The Universe tiling code was modified from @richardjgowers [https://github.com/richardjgowers]’s gist on the issue [https://gist.github.com/richardjgowers/b16b871259451e85af0bd2907d30de91] in 2016.

 Transformations

Transformations

	Centering a trajectory in the box

 Centering a trajectory in the box

Centering a trajectory in the box

Here we use MDAnalysis transformations to make a protein whole, center it in the box, and then wrap the water back into the box. We then look at how to do this on-the-fly.

Last executed: Feb 07, 2020 with MDAnalysis 0.20.2-dev0

Last updated: January 2020

Minimum version of MDAnalysis: 0.19.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

Optional packages for visualisation:

	nglview [http://nglviewer.org/nglview/latest/] ([NCR18])

[1]:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import TPR, XTC
import numpy as np
import nglview as nv

Loading files

The test files we will be working with here are trajectories of a adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09])

For the step-by-step transformations, we need to load the trajectory into memory so that our changes to the coordinates persist. If your trajectory is too large for that, see the on-the-fly transformation section for how to do this out-of-memory.

[2]:

u = mda.Universe(TPR, XTC, in_memory=True)

Before transformation

If you have NGLView installed, you can view the trajectory as it currently is.

[]:

view = nv.show_mdanalysis(u)
view.add_representation('point', 'resname SOL')
view.center()
view

Otherwise, we embed a gif of it below.

[image: original]

For easier analysis and nicer visualisation, we want to center this protein in the box.

Unwrapping the protein

The first step is to “unwrap” the protein from the border of the box, to make the protein whole. MDAnalysis provides the AtomGroup.unwrap function to do this easily. Note that this function requires your universe to have bonds in it.

We loop over the trajectory to unwrap for each frame.

[3]:

protein = u.select_atoms('protein')

for ts in u.trajectory:
 protein.unwrap(compound='fragments')

As you can see, the protein is now whole, but not centered.

[]:

unwrapped = nv.show_mdanalysis(u)
unwrapped.add_representation('point', 'resname SOL')
unwrapped.center()
unwrapped

Over the course of the trajectory it leaves the box.

[image: unwrapped]

Centering in the box

The next step is to center the protein in the box. We calculate the center-of-mass of the protein and the center of the box for each timestep. We then move all the atoms so that the protein center-of-mass is in the center of the box.

If you don’t have masses in your trajectory, try using the center_of_geometry.

[4]:

for ts in u.trajectory:
 protein_center = protein.center_of_mass(pbc=True)
 dim = ts.triclinic_dimensions
 box_center = np.sum(dim, axis=0) / 2
 u.atoms.translate(box_center - protein_center)

The protein is now in the center of the box, but the solvent is likely outside it, as we have just moved all the atoms.

[]:

centered = nv.show_mdanalysis(u)
centered.add_representation('point', 'resname SOL')
centered.center()
centered

[image: centered]

Wrapping the solvent back into the box

Luckily, MDAnalysis also has AtomGroup.wrap to wrap molecules back into the box. Our trajectory has dimensions defined, which the function will find automatically. If your trajectory does not, or you wish to use a differently sized box, you can pass in a box with dimensions in the form [lx, ly, lz, alpha, beta, gamma].

[5]:

not_protein = u.select_atoms('not protein')

for ts in u.trajectory:
 not_protein.wrap(compound='residues')

And now it is centered!

[]:

wrapped = nv.show_mdanalysis(u)
wrapped.add_representation('point', 'resname SOL')
wrapped.center()
wrapped

[image: wrapped]

Doing all this on-the-fly

Running all the transformations above can be difficult if your trajectory is large, or your computational resources are limited. Use on-the-fly transformations to keep your data out-of-memory.

Some common transformations are defined in MDAnalysis.transformations.

[7]:

import MDAnalysis.transformations as trans

We re-load our universe.

[8]:

u2 = mda.Universe(TPR, XTC)

protein2 = u2.select_atoms('protein')
not_protein2 = u2.select_atoms('not protein')

If you are using MDAnalysis from version 0.21.0 onwards, the MDAnalysis.transformations module contains wrap and unwrap functions. If not, we need to define a transformation ourselves.

A transformation is a function takes a MDAnalysis.coordinates.base.Timestep of a trajectory, modifies the positions, and returns the timestep.

[9]:

def unwrap(ts):
 protein2.unwrap()
 return ts

def wrap(ts):
 not_protein2.wrap()
 return ts

If you need arguments besides the timestep, you can return a wrapped function. The outer function contains your other arguments. The inner wrapped_function function only takes the ts argument and returns it, as usual.

[10]:

def unwrap_atomgroup(ag):
 def wrapped_function(ts):
 ag.unwrap()
 return ts
 return wrapped_function

def wrap_atomgroup(ag):
 def wrapped_function(ts):
 ag.wrap()
 return ts
 return wrapped_function

At this point, you can pass your transformations into your trajectory. You can only use add_transformations once, so pass them all in at once.

[11]:

transforms = [unwrap_atomgroup(protein2),
 trans.center_in_box(protein2, wrap=True),
 wrap_atomgroup(not_protein2)]

u2.trajectory.add_transformations(*transforms)

[]:

otf = nv.show_mdanalysis(u2)
otf.add_representation('point', 'resname SOL')
otf.center()
otf

[image: on the fly]

References

[1] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[2] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[3] Hai Nguyen, David A Case, and Alexander S Rose. NGLview–interactive molecular graphics for Jupyter notebooks. Bioinformatics, 34(7):1241–1242, April 2018. 00024. URL: https://academic.oup.com/bioinformatics/article/34/7/1241/4721781, doi:10.1093/bioinformatics/btx789.

[4] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

 Alignments and RMS fitting

Alignments and RMS fitting

The MDAnalysis.analysis.align [https://www.mdanalysis.org/docs/documentation_pages/analysis/align.html#module-MDAnalysis.analysis.align] and MDAnalysis.analysis.rms [https://www.mdanalysis.org/docs/documentation_pages/analysis/rms.html#module-MDAnalysis.analysis.rms] modules contain the functions used for aligning structures, aligning trajectories, and calculating root mean squared quantities.

Note

These modules use the fast QCP algorithm to calculate the root mean
square distance (RMSD) between two coordinate sets [The05] and
the rotation matrix R that minimizes the RMSD [LAT09]. Please
cite these references when using these modules.

	Aligning a structure to another

	Aligning a trajectory to itself

	Aligning a trajectory to a reference

	Calculating the root mean square deviation of atomic structures

	Calculating the pairwise RMSD of a trajectory

 Aligning a structure to another

Aligning a structure to another

We use align.alignto to align a structure to another.

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: February 2020

Minimum version of MDAnalysis: 0.17.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

Optional packages for molecular visualisation:

	nglview [http://nglviewer.org/nglview/latest] ([NCR18])

Note

MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]) and a rotation matrix R that minimises the RMSD ([LAT09]). Please cite ([The05]) and ([LAT09]) when using the MDAnalysis.analysis.align module in published work.

[1]:

import MDAnalysis as mda
from MDAnalysis.analysis import align
from MDAnalysis.tests.datafiles import CRD, PSF, DCD, DCD2
import nglview as nv

Loading files

The test files we will be working with here are trajectories of a adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09]) The trajectories sample a transition from a closed to an open conformation.

[2]:

adk_open = mda.Universe(CRD, DCD2)
nv.show_mdanalysis(adk_open)

[3]:

adk_closed = mda.Universe(PSF, DCD)
nv.show_mdanalysis(adk_closed.atoms)

Currently, the proteins are not aligned to each other. The difference becomes even more obvious when the closed conformation is compared to the open. Below, we set adk_open to the last frame and see the relative positions of each protein in a merged Universe.

[4]:

adk_open.trajectory[-1] # last frame
merged = mda.Merge(adk_open.atoms, adk_closed.atoms)
nv.show_mdanalysis(merged)

Aligning a structure with align.alignto

alignto aligns the mobile AtomGroup to the target AtomGroup by minimising the RMSD. It returns (old_rmsd, new_rmsd).

[5]:

align.alignto(adk_open, # mobile
 adk_closed, # reference
 select='name CA') # selection to operate on

[5]:

(21.712154435976014, 6.817293751703893)

[6]:

nv.show_mdanalysis(mda.Merge(adk_open.atoms, adk_closed.atoms))

However, positions are set temporarily. If we flip to the first frame of adk_open and back to the last frame, we can see that it has returned to its original location.

[7]:

adk_open.trajectory[0] # set to first frame
adk_open.trajectory[-1] # set to last frame
nv.show_mdanalysis(mda.Merge(adk_open.atoms, adk_closed.atoms))

You can save the aligned positions by writing them out to a PDB file and creating a new Universe.

[8]:

align.alignto(adk_open, adk_closed, select='name CA')
adk_open.atoms.write('aligned.pdb')
nv.show_mdanalysis(mda.Universe('aligned.pdb'))

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[3] Pu Liu, Dimitris K. Agrafiotis, and Douglas L. Theobald. Fast determination of the optimal rotational matrix for macromolecular superpositions. Journal of Computational Chemistry, pages n/a–n/a, 2009. URL: http://doi.wiley.com/10.1002/jcc.21439, doi:10.1002/jcc.21439.

[4] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[5] Hai Nguyen, David A Case, and Alexander S Rose. NGLview–interactive molecular graphics for Jupyter notebooks. Bioinformatics, 34(7):1241–1242, April 2018. 00024. URL: https://academic.oup.com/bioinformatics/article/34/7/1241/4721781, doi:10.1093/bioinformatics/btx789.

[6] Douglas L. Theobald. Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. Acta Crystallographica Section A Foundations of Crystallography, 61(4):478–480, July 2005. 00127. URL: http://scripts.iucr.org/cgi-bin/paper?S0108767305015266, doi:10.1107/S0108767305015266.

 Aligning a trajectory to itself

Aligning a trajectory to itself

We use align.AlignTraj to align a trajectory to a reference frame and write it to a file.

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: February 2020

Minimum version of MDAnalysis: 0.17.0

Packages required:

	MDAnalysis ([MADWB11], [GLB+16])

	MDAnalysisTests

Note

MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]) and a rotation matrix R that minimises the RMSD ([LAT09]). Please cite ([The05]) and ([LAT09]) when using the MDAnalysis.analysis.align module in published work.

[1]:

import MDAnalysis as mda
from MDAnalysis.analysis import align, rms
from MDAnalysis.tests.datafiles import PSF, DCD

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. ([BDPW09]) The trajectory samples a transition from a closed to an open conformation.

[2]:

mobile = mda.Universe(PSF, DCD)
ref = mda.Universe(PSF, DCD)

Aligning a trajectory to the first frame

While align.alignto aligns structures, or a frame of a trajectory, align.AlignTraj efficiently aligns an entire trajectory to a reference.

We first check the RMSD of our unaligned trajectory, we can compare results. The code below sets the mobile trajectory to the last frame by indexing the last timestep, ref to the first frame by indexing the first timestep, and computes the root mean squared deviation between the alpha-carbon positions.

[3]:

mobile.trajectory[-1] # set mobile trajectory to last frame
ref.trajectory[0] # set reference trajectory to first frame

mobile_ca = mobile.select_atoms('name CA')
ref_ca = ref.select_atoms('name CA')
rms.rmsd(mobile_ca.positions, ref_ca.positions, superposition=False)

[3]:

6.842901296805416

Now we can align the trajectory. We have already set ref to the first frame. In the cell below, we load the positions of the trajectory into memory so we can modify the trajectory in Python.

[4]:

aligner = align.AlignTraj(mobile, ref, select='name CA', in_memory=True).run()

If you don’t have enough memory to do that, write the trajectory out to a file and reload it into MDAnalysis (uncomment the cell below). Otherwise, you don’t have to run it.

[5]:

aligner = align.AlignTraj(mobile, ref, select='backbone',
filename='aligned_to_first_frame.dcd').run()
mobile = mda.Universe(PSF, 'aligned_to_first_frame.dcd')

Now we can see that the RMSD has reduced (minorly).

[6]:

mobile.trajectory[-1] # set mobile trajectory to last frame
ref.trajectory[0] # set reference trajectory to first frame

mobile_ca = mobile.select_atoms('name CA')
ref_ca = ref.select_atoms('name CA')
rms.rmsd(mobile_ca.positions, ref_ca.positions, superposition=False)

[6]:

6.814428283558119

Aligning a trajectory to the third frame

We can align the trajectory to any frame: for example, the third one. The procedure is much the same, except that we must set ref to the third frame by indexing the third timestep.

[7]:

mobile.trajectory[-1] # set mobile trajectory to last frame
ref.trajectory[2] # set reference trajectory to third frame

rms.rmsd(mobile.atoms.positions, ref.atoms.positions, superposition=False)

[7]:

6.72985428871556

[8]:

aligner = align.AlignTraj(mobile, ref, select='all', in_memory=True).run()

[9]:

mobile.trajectory[-1] # set mobile trajectory to last frame
ref.trajectory[2] # set reference trajectory to third frame

rms.rmsd(mobile.atoms.positions, ref.atoms.positions, superposition=False)

[9]:

6.724951326370686

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of Adenylate Kinase: Atomistic Insights into the Ensemble of Open↔Closed Transitions. Journal of Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-00e.

[3] Pu Liu, Dimitris K. Agrafiotis, and Douglas L. Theobald. Fast determination of the optimal rotational matrix for macromolecular superpositions. Journal