
MDAnalysis User Guide

Lily Wang, Rocco Meli, Richard J. Gowers, and Oliver Beckstein

Jun 17, 2020

GETTING STARTED

1 Why MDAnalysis? 3

2 Participating 5

Bibliography 247

Index 249

i

ii

MDAnalysis User Guide

MDAnalysis version: 1.0.0

Last updated: Jun 17, 2020

MDAnalysis (www.mdanalysis.org) is a Python toolkit to analyse molecular dynamics files and trajectories in many
popular formats. MDAnalysis can write most of these formats, too, together with atom selections for use in visual-
isation tools or other analysis programs. It provides a fast framework for complex analysis tasks, as well as flexible
tooling to construct your own analyses.

GETTING STARTED 1

https://www.mdanalysis.org

MDAnalysis User Guide

2 GETTING STARTED

CHAPTER

ONE

WHY MDANALYSIS?

The typical use case for MDAnalysis is to manipulate or analyse molecular dynamics trajectories. The library focuses
on two key features:

• Memory efficiency. The size of trajectory data can quickly overwhelm the memory resources of your computer.
MDAnalysis typically accesses your trajectory by only loading data for one frame at a time. This allows you to
work with trajectories of any length without difficulty.

• Flexibility. MDAnalysis is constructed to be easily extensible. If an analysis method is not already available in
MDAnalysis, you can write your own custom trajectory analysis with the building blocks provided. If you need
to read in a custom file format, you can construct your own Reader or Parser that will automatically get picked
up when MDAnalysis is constructing a Universe from files. You can create and add your own labels for atoms,
residues, or segments (called topology attributes) and relationships between atoms (e.g. bonds, angles).

3

MDAnalysis User Guide

4 Chapter 1. Why MDAnalysis?

CHAPTER

TWO

PARTICIPATING

MDAnalysis welcomes all contributions from its users. There are many ways you can help improve MDAnalysis,
from asking questions on the mdnalysis-discussion mailing list, to raising issues on the Issue Tracker, to adding your
own code. Please see Contributing to MDAnalysis for an introduction and guide to contributing to the code and
documentation.

Important: Ground rules and expectations

The MDAnalysis community subscribes to a Code of Conduct. By participating in this project and community, you
agree to abide by its terms. Please read it.

In general, we expect you to be kind and thoughtful in your conversations around this project. We all come from
different backgrounds and projects, which means we will not always agree. Try to listen and understand why others
hold their viewpoints in discussions. Rather than blaming each other, focus on helping to resolve issues and learning
from mistakes.

2.1 Communications

Questions and discussions about MDAnalysis take place on the mailing lists and this repository’s Issue Tracker. Any-
body is welcome to join these conversations. Please ask questions about the usage of MDAnalysis on the mdnalysis-
discussion mailing list, and report problems on the Issue Tracker.

Wherever possible, do not take these conversations to private channels, including contacting the maintainers directly.
Keeping communication public means everybody can benefit and learn from the conversation.

2.1.1 Installation

The latest versions of MDAnalysis can be installed using conda or pip. Currently, the conda releases only support
serial calculations. If you plan to use the parallel OpenMP algorithms, you need to install MDAnalysis with pip and
have a working OpenMP installation.

MDAnalysis has a separate test suite MDAnalysisTests that is required to run the test cases and examples. The
test files change less frequently, take up around 90 MB of space, and are not needed for daily use of MDAnalysis.
However, they are often used in examples, including many in this User Guide. If you are not interested in developing
MDAnalysis or using the example files, you most likely don’t need the tests. If you want to run examples in the User
Guide, install the tests. The tests are distributed separately from the main package.

5

https://groups.google.com/group/mdnalysis-discussion
https://github.com/MDAnalysis/mdanalysis/issues
https://www.mdanalysis.org/pages/conduct/
https://github.com/MDAnalysis/mdanalysis/issues
https://groups.google.com/group/mdnalysis-discussion
https://groups.google.com/group/mdnalysis-discussion
https://github.com/MDAnalysis/mdanalysis/issues

MDAnalysis User Guide

conda

To install the latest stable version of MDAnalysis via conda, use the following command. This installs all dependen-
cies needed for full analysis functionality (excluding external programs such as HOLE):

conda install -c conda-forge mdanalysis

To upgrade:

conda update mdanalysis

To install the tests:

conda install -c conda-forge MDAnalysisTests

pip

The following command will install or upgrade the latest stable version of MDAnalysis via pip, with core dependen-
cies. This means that some packages required by specific analysis modules will not be installed.

pip install --upgrade MDAnalysis

If you need to install a fully-featured MDAnalysis, add the analysis tag. As with conda, this will not install
external programs such as HOLE.

pip install --upgrade MDAnalysis[analysis]

To install/upgrade tests:

pip install --upgrade MDAnalysisTests

Development versions

To install development versions of MDAnalysis, you can compile it from source.

git clone https://github.com/MDAnalysis/mdanalysis
cd mdanalysis
pip install -e .

In order to install from source, you will need numpy and cython. See Creating a development environment for
instructions on how to create a full development environment.

Testing

The tests rely on the pytest and numpy packages, which must also be installed. Run tests with:

pytest --disable-pytest-warnings --pyargs MDAnalysisTests

All tests should pass (i.e. no FAIL, ERROR); SKIPPED or XFAIL are ok. If anything fails or gives an error, ask on
the user mailing list or raise an issue.

Testing MDAnalysis can take a while, as there are quite a few tests. The plugin pytest-xdist can be used to run tests in
parallel.

6 Chapter 2. Participating

http://www.holeprogram.org
http://www.holeprogram.org
http://users.mdanalysis.org/
http://users.mdanalysis.org/
https://github.com/MDAnalysis/mdanalysis/issues
https://github.com/pytest-dev/pytest-xdist

MDAnalysis User Guide

pip install pytest-xdist
pytest --disable-pytest-warnings --pyargs MDAnalysisTests --numprocesses 4

Additional datasets

MDAnalysisData is an additional package with datasets that can be used in example tutorials. You can install it with
conda or pip:

conda
conda install -c conda-forge mdanalysisdata
pip
pip install --upgrade MDAnalysisData

This installation does not download all the datasets; instead, the datasets are cached when they are first downloaded
using a Python command.

2.1.2 Quick start guide

MDAnalysis version: 0.18.0

Last updated: November 2019

This guide is designed as a basic introduction to MDAnalysis to get you up and running. You can see more complex
tasks in our Example notebooks. This page outlines how to:

• load a molecular dynamics structure or trajectory

• work with AtomGroups, a central data structure in MDAnalysis

• work with a trajectory

• write out coordinates

• use the analysis algorithms in MDAnalysis

• correct and automated citation of MDAnalysis and algorithms

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD, GRO, XTC

print(mda.Universe(PSF, DCD))
print(mda.__version__)

<Universe with 3341 atoms>
0.20.1

This tutorial assumes that you already have MDAnalysis installed. Running the cell above should give something
similar to:

<Universe with 3341 atoms>
0.20.1

If you get an error message, you need to install MDAnalysis. If your version is under 0.18.0, you need to upgrade
MDAnalysis. Instructions for both are here. After installing, restart this notebook.

2.1. Communications 7

https://mdanalysis.org/UserGuide/examples/README.html
https://www.mdanalysis.org/UserGuide/installation

MDAnalysis User Guide

Overview

MDAnalysis is a Python package that provides tools to access and analyse data in molecular dynamics trajectories.
Several key data structures form the backbone of MDAnalysis.

• A molecular system consists of particles. A particle is represented as an Atom object, even if it is a coarse-
grained bead.

• Atoms are grouped into AtomGroups. The AtomGroup is probably the most important class in MDAnalysis,
as almost everything can be accessed through it. See Working with atoms below.

• A Universe contains all the particles in a molecular system in an AtomGroup accessible at the .atoms
attribute, and combines it with a trajectory at .trajectory.

A fundamental concept in MDAnalysis is that at any one time, only one time frame of the trajectory is being accessed.
The trajectory attribute of a Universe is usually a file reader. Think of the trajectory as a function 𝑋(𝑡) of the
frame index 𝑡 that only makes the data from this specific frame available. This structure is important because it allows
MDAnalysis to work with trajectory files too large to fit into the computer’s memory.

Loading a structure or trajectory

Working with MDAnalysis typically starts with loading data into a Universe, the central data structure in MDAnal-
ysis. The user guide has a complete explanation of ways to create and manipulate a Universe.

The first arguments for creating a Universe are topology and trajectory files.

• A topology file is always required for loading data into a Universe. A topology file lists atoms, residues, and
their connectivity. MDAnalysis accepts the PSF, PDB, CRD, and GRO formats.

• A topology file can then be followed by any number of trajectory files. A trajectory file contains a list of
coordinates in the order defined in the topology. If no trajectory files are given, then only a structure is loaded.
If multiple trajectory files are given, the trajectories are concatenated in the given order. MDAnalysis accepts
single frames (e.g. PDB, CRD, GRO) and timeseries data (e.g. DCD, XTC, TRR, XYZ).

[2]: psf = mda.Universe(PSF)
print(psf)
print(hasattr(psf, 'trajectory'))

<Universe with 3341 atoms>
False

As PSF files don’t contain any coordinate information and no trajectory file has been loaded, the psf universe does
not contain a trajectory. If the topology file does contain coordinate information, a trajectory of 1 frame is created.

[3]: gro = mda.Universe(GRO)
print(gro)
print(len(gro.trajectory))

<Universe with 47681 atoms>
1

For the remainder of this guide we will work with the universe u, created below. This is a simulation where the enzyme
adenylate kinase samples a transition from a closed to an open conformation (Beckstein *et al.*, 2009).

[4]: u = mda.Universe(PSF, DCD)
print(u)
print(len(u.trajectory))

<Universe with 3341 atoms>
98

8 Chapter 2. Participating

https://www.mdanalysis.org/UserGuide/atomgroup
https://www.mdanalysis.org/UserGuide/universe
https://doi.org/10.1016/j.jmb.2009.09.009

MDAnalysis User Guide

Note

The MDAnalysis test suite is packaged with a bunch of test files and trajectories, which are named after their file
format. We are using these files throughout this guide for convenience. To analyse your own files, simply replace the
PSF and DCD above with paths to your own files. For example:

structure_only = mda.Universe("my_pdb_file.pdb")

Working with groups of atoms

Most analysis requires creating and working with an AtomGroup, a collection of Atoms. For convenience, you
can also work with chemically meaningful groups of Atoms such as a Residue or a Segment. These come
with analogous containers to AtomGroup: ResidueGroup and SegmentGroup. For instance, the .residues
attribute of a Universe returns a ResidueGroup.

[5]: print(u.residues)

<ResidueGroup [<Residue MET, 1>, <Residue ARG, 2>, <Residue ILE, 3>, ..., <Residue
→˓ILE, 212>, <Residue LEU, 213>, <Residue GLY, 214>]>

Selecting atoms

The easiest way to access the particles of your Universe is with the atoms attribute:

[6]: u.atoms

[6]: <AtomGroup with 3341 atoms>

This returns an AtomGroup, which can be thought of as a list of Atom objects. Most analysis involves working with
groups of atoms in AtomGroups. AtomGroups can easily be created by slicing another AtomGroup. For example,
the below slice returns the last five atoms.

[7]: last_five = u.atoms[-5:]
print(last_five)

<AtomGroup [<Atom 3337: HA1 of type 6 of resname GLY, resid 214 and segid 4AKE>,
→˓<Atom 3338: HA2 of type 6 of resname GLY, resid 214 and segid 4AKE>, <Atom 3339: C
→˓of type 32 of resname GLY, resid 214 and segid 4AKE>, <Atom 3340: OT1 of type 72 of
→˓resname GLY, resid 214 and segid 4AKE>, <Atom 3341: OT2 of type 72 of resname GLY,
→˓resid 214 and segid 4AKE>]>

MDAnalysis supports fancy indexing: passing an array or list of indices to get a new AtomGroup with the atoms at
those indices in the old AtomGroup.

[8]: print(last_five[[0, 3, -1, 1, 3, 0]])

<AtomGroup [<Atom 3337: HA1 of type 6 of resname GLY, resid 214 and segid 4AKE>,
→˓<Atom 3340: OT1 of type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3341:
→˓OT2 of type 72 of resname GLY, resid 214 and segid 4AKE>, <Atom 3338: HA2 of type 6
→˓of resname GLY, resid 214 and segid 4AKE>, <Atom 3340: OT1 of type 72 of resname
→˓GLY, resid 214 and segid 4AKE>, <Atom 3337: HA1 of type 6 of resname GLY, resid 214
→˓and segid 4AKE>]>

2.1. Communications 9

MDAnalysis User Guide

MDAnalysis has also implemented a powerful atom selection language that is similar to existing languages in
VMD, PyMol, and other packages. This is available with the .select_atoms() function of an AtomGroup
or Universe instance:

[9]: print(u.select_atoms('resname ASP or resname GLU'))

<AtomGroup [<Atom 318: N of type 54 of resname GLU, resid 22 and segid 4AKE>, <Atom
→˓319: HN of type 1 of resname GLU, resid 22 and segid 4AKE>, <Atom 320: CA of type
→˓22 of resname GLU, resid 22 and segid 4AKE>, ..., <Atom 3271: OE2 of type 72 of
→˓resname GLU, resid 210 and segid 4AKE>, <Atom 3272: C of type 20 of resname GLU,
→˓resid 210 and segid 4AKE>, <Atom 3273: O of type 70 of resname GLU, resid 210 and
→˓segid 4AKE>]>

Numerical ranges can be written as first-last or first:lastwhere the range is inclusive. Note that in slicing,
the last index is not included.

[10]: print(u.select_atoms('resid 50-100').n_residues)
print(u.residues[50:100].n_residues)

51
50

Selections can also be combined with boolean operators, and allow wildcards.

For example, the command below selects the 𝐶𝛼 atoms of glutamic acid and histidine in the first 100 residues of the
protein. Glutamic acid is typically named “GLU”, but histidine can be named “HIS”, “HSD”, or “HSE” depending on
its protonation state and the force field used.

[11]: u.select_atoms("(resname GLU or resname HS*) and name CA and (resid 1:100)")

[11]: <AtomGroup with 6 atoms>

Note

An AtomGroup created from a selection is sorted and duplicate elements are removed. This is not true for an
AtomGroup produced by slicing. Thus, slicing can be used when the order of atoms is crucial.

The user guide has a complete rundown of creating AtomGroups through indexing, selection language, and set
methods.

Getting atom information from AtomGroups

An AtomGroup can tell you information about the atoms inside it with a number of convenient attributes.

[12]: print(u.atoms[:20].names)

[’N’ ’HT1’ ’HT2’ ’HT3’ ’CA’ ’HA’ ’CB’ ’HB1’ ’HB2’ ’CG’ ’HG1’ ’HG2’ ’SD’
’CE’ ’HE1’ ’HE2’ ’HE3’ ’C’ ’O’ ’N’]

[13]: print(u.atoms[50:70].masses)

[1.008 1.008 1.008 12.011 1.008 1.008 12.011 1.008 1.008 1.008
12.011 15.999 14.007 1.008 12.011 1.008 12.011 1.008 12.011 1.008]

It also knows which residues and segments the atoms belong to. The .residues and .segments return a
ResidueGroup and SegmentGroup, respectively.

10 Chapter 2. Participating

https://www.mdanalysis.org/UserGuide/selections
https://www.ks.uiuc.edu/Research/vmd/
https://pymol.org/2/
https://www.mdanalysis.org/UserGuide/atomgroup

MDAnalysis User Guide

[14]: print(u.atoms[:20].residues)
print(u.atoms[-20:].segments)

<ResidueGroup [<Residue MET, 1>, <Residue ARG, 2>]>
<SegmentGroup [<Segment 4AKE>]>

Note that there are no duplicates in the ResidueGroup and SegmentGroup above. To get residue attributes
atom-wise, you can access them directly through AtomGroup.

[15]: print(u.atoms[:20].resnames)

[’MET’ ’MET’ ’MET’ ’MET’ ’MET’ ’MET’ ’MET’ ’MET’ ’MET’ ’MET’ ’MET’ ’MET’
’MET’ ’MET’ ’MET’ ’MET’ ’MET’ ’MET’ ’MET’ ’ARG’]

You can group atoms together by topology attributes.

For example, to group atoms with the same residue name and mass together:

[16]: near_met = u.select_atoms('not resname MET and (around 2 resname MET)')
near_met.groupby(['resnames', 'names'])

[16]: {('ALA', 'HN'): <AtomGroup with 2 atoms>,
('ALA', 'C'): <AtomGroup with 1 atom>,
('ASP', 'N'): <AtomGroup with 1 atom>,
('ASP', 'C'): <AtomGroup with 1 atom>,
('THR', 'N'): <AtomGroup with 1 atom>,
('GLU', 'N'): <AtomGroup with 1 atom>,
('ILE', 'C'): <AtomGroup with 2 atoms>,
('LEU', 'N'): <AtomGroup with 1 atom>,
('GLN', 'C'): <AtomGroup with 1 atom>,
('ASN', 'O'): <AtomGroup with 1 atom>,
('LYS', 'N'): <AtomGroup with 1 atom>,
('ARG', 'N'): <AtomGroup with 1 atom>}

A complete list of topology attributes can be found in the user guide.

AtomGroup positions and methods

The .positions attribute is probably the most important information you can get from an AtomGroup: a numpy.
ndarray of coordinates, with the shape (n_atoms, 3).

[17]: ca = u.select_atoms('resid 1-5 and name CA')
print(ca.positions)
print(ca.positions.shape)

[[11.664622 8.393473 -8.983231]
[11.414839 5.4344215 -6.5134845]
[8.959755 5.612923 -3.6132305]
[8.290068 3.075991 -0.79665166]
[5.011126 3.7638984 1.130355]]

(5, 3)

A number of other quantities have been defined for an AtomGroup, including:

• .center_of_mass()

• .center_of_geometry()

• .total_mass()

2.1. Communications 11

https://www.mdanalysis.org/UserGuide/topology_system.html#topology-attributes

MDAnalysis User Guide

• .total_charge()

• .radius_of_gyration()

• .bsphere() (the bounding sphere of the selection)

See the user guide for a complete list and description of AtomGroup methods.

[18]: print(ca.center_of_mass())

[9.06808195 5.25614133 -3.75524844]

Note

The .center_of_mass() function, like many of the analysis modules in MDAnalysis, relies on hav-
ing accurate mass properties available. ‘Particle masses may not always be available or accurate!
<https://www.mdanalysis.org/UserGuide/formats/guessing.html#masses>‘__

Currently, MDAnalysis assigns masses to particles based on their element or ‘atom type’, which is guessed from the
particle name. If MDAnalysis guesses incorrectly (e.g. a calcium atom called CA is treated as a 𝐶𝛼), the mass of that
atom will be inaccurate. If MDAnalysis has no idea what the particle is (e.g. coarse-grained beads), it will raise a
warning, and give that particle a mass of 0.

To be certain that MDAnalysis is using the correct masses, you can set them manually.

MDAnalysis can also create topology geometries such as bonds, angles, dihedral angles, and improper angles from an
AtomGroup. This AtomGroup has a special requirement: only the atoms involved in the geometry can be in the
group. For example, an AtomGroup used to create a bond can only have 2 atoms in it; an AtomGroup used to create
a dihedral or improper angle must have 4 atoms.

[19]: nhh = u.atoms[:3]
print(nhh.names)

[’N’ ’HT1’ ’HT2’]

After a topology object such as an angle is created, the value of the angle (in degrees) can be calculated based on the
positions of the atoms.

[20]: angle_nhh = nhh.angle
print(angle_nhh.value())

37.99234750892497

Note that the order of the atoms matters for angles, dihedrals, and impropers. The value returned for an angle is
the angle between first and third atom, with the apex at the second. Fancy indexing is one way to get an ordered
AtomGroup.

3
/

/
2------1

[21]: hnh = u.atoms[[1, 0, 2]]
print(hnh.names)

[’HT1’ ’N’ ’HT2’]

[22]: angle_hnh = hnh.angle
print(angle_hnh.value())

12 Chapter 2. Participating

https://www.mdanalysis.org/UserGuide/topology_system.html#topology-specific-methods
https://www.mdanalysis.org/UserGuide/topology_system.html#topology-objects

MDAnalysis User Guide

106.20364651944931

Working with trajectories

The trajectory of a Universe contains the changing coordinate information. The number of frames in a trajectory is its
length:

[23]: print(len(u.trajectory))

98

The standard way to assess the information of each frame in a trajectory is to iterate over it. When the timestep
changes, the universe only contains information associated with that timestep.

[24]: for ts in u.trajectory[:20]:
time = u.trajectory.time
rgyr = u.atoms.radius_of_gyration()
print("Frame: {:3d}, Time: {:4.0f} ps, Rgyr: {:.4f} A".format(ts.frame, time,

→˓rgyr))

Frame: 0, Time: 1 ps, Rgyr: 16.6690 A
Frame: 1, Time: 2 ps, Rgyr: 16.6732 A
Frame: 2, Time: 3 ps, Rgyr: 16.7315 A
Frame: 3, Time: 4 ps, Rgyr: 16.7223 A
Frame: 4, Time: 5 ps, Rgyr: 16.7440 A
Frame: 5, Time: 6 ps, Rgyr: 16.7185 A
Frame: 6, Time: 7 ps, Rgyr: 16.7741 A
Frame: 7, Time: 8 ps, Rgyr: 16.7764 A
Frame: 8, Time: 9 ps, Rgyr: 16.7894 A
Frame: 9, Time: 10 ps, Rgyr: 16.8289 A
Frame: 10, Time: 11 ps, Rgyr: 16.8521 A
Frame: 11, Time: 12 ps, Rgyr: 16.8549 A
Frame: 12, Time: 13 ps, Rgyr: 16.8723 A
Frame: 13, Time: 14 ps, Rgyr: 16.9108 A
Frame: 14, Time: 15 ps, Rgyr: 16.9494 A
Frame: 15, Time: 16 ps, Rgyr: 16.9810 A
Frame: 16, Time: 17 ps, Rgyr: 17.0033 A
Frame: 17, Time: 18 ps, Rgyr: 17.0196 A
Frame: 18, Time: 19 ps, Rgyr: 17.0784 A
Frame: 19, Time: 20 ps, Rgyr: 17.1265 A

After iteration, the trajectory ‘resets’ back to the first frame. Please see the user guide for more information.

[25]: print(u.trajectory.frame)

0

You can set the timestep of the trajectory with the frame index:

[26]: print(u.trajectory[10].frame)

10

This persists until the timestep is next changed.

[27]: frame = u.trajectory.frame
time = u.trajectory.time

(continues on next page)

2.1. Communications 13

https://mdanalysis.org/UserGuide/trajectories/trajectories.html
https://mdanalysis.org/UserGuide/trajectories/trajectories.html

MDAnalysis User Guide

(continued from previous page)

rgyr = u.atoms.radius_of_gyration()
print("Frame: {:3d}, Time: {:4.0f} ps, Rgyr: {:.4f} A".format(frame, time, rgyr))

Frame: 10, Time: 11 ps, Rgyr: 16.8521 A

Generally, trajectory analysis first collects frame-wise data in a list.

[28]: rgyr = []
time = []
protein = u.select_atoms("protein")
for ts in u.trajectory:

time.append(u.trajectory.time)
rgyr.append(protein.radius_of_gyration())

This can then be converted into other data structures, such as a numpy array or a pandas DataFrame. It can be plotted
(as below), or used for further analysis.

The following section requires the pandas package (installation: conda install pandas or pip install
pandas) and matplotlib (installation: conda install matplotlib or pip install matplotlib)

[29]: import pandas as pd
rgyr_df = pd.DataFrame(rgyr, columns=['Radius of gyration (A)'], index=time)
rgyr_df.index.name = 'Time (ps)'

rgyr_df.head()

[29]: Radius of gyration (A)
Time (ps)
1.0 16.669018
2.0 16.673217
3.0 16.731454
4.0 16.722283
5.0 16.743961

[30]: %matplotlib inline

rgyr_df.plot(title='Radius of gyration')

[30]: <matplotlib.axes._subplots.AxesSubplot at 0x11f2c1f10>

14 Chapter 2. Participating

https://pandas.pydata.org
https://matplotlib.org/

MDAnalysis User Guide

Dynamic selection

As seen above, coordinates change while iterating over the trajectory. Therefore, properties calculated from the coor-
dinates, such as the radius of gyration, also change.

Selections are often defined on static properties that do not change when moving through a trajectory. Above, the static
selection is all the atoms that are in a protein. You can define the selection once and then recalculate the property of
interest for each frame of the trajectory.

However, some selections contain distance-dependent queries (such as around or point, see selection keywords
for more details). In this case, the selection should be updated for each time step using a dynamic selection by setting
the keyword updating=True. This command gives an UpdatingAtomGroup rather than a static AtomGroup.

[31]: dynamic = u.select_atoms('around 2 resname ALA', updating=True)
print(type(dynamic))
dynamic

<class ’MDAnalysis.core.groups.UpdatingAtomGroup’>

[31]: <AtomGroup with 54 atoms, with selection 'around 2 resname ALA' on the entire
→˓Universe.>

[32]: static = u.select_atoms('around 2 resname ALA')
print(type(static))
static

<class ’MDAnalysis.core.groups.AtomGroup’>

[32]: <AtomGroup with 54 atoms>

When you call the next frame of the universe, the atoms in the dynamic selection are updated, whereas the atoms in
the static selection remain the same.

[33]: u.trajectory.next()
dynamic

[33]: <AtomGroup with 56 atoms, with selection 'around 2 resname ALA' on the entire
→˓Universe.>

[34]: static

[34]: <AtomGroup with 54 atoms>

Writing out coordinates

MDAnalysis supports writing data out into a range of file formats, including both single frame formats (e.g. PDB,
GRO) and trajectory writers (e.g. XTC, DCD, and multi-frame PDB files). The user guide has a complete list of
formats, each with their own reference pages.

Single frame

The most straightforward way to write to a file that can only hold a single frame is to use the write() method of any
AtomGroup. MDAnalysis uses the file extension to determine the output file format. For instance, to only write out
the 𝐶𝛼 atoms to a file in GRO format:

ca = u.select_atoms('name CA')
ca.write('calphas.gro')

2.1. Communications 15

https://www.mdanalysis.org/UserGuide/selections
https://www.mdanalysis.org/UserGuide/selections
https://www.mdanalysis.org/UserGuide/reading_and_writing.html#output
https://mdanalysis.org/UserGuide/formats/index.html
https://mdanalysis.org/UserGuide/formats/index.html
https://mdanalysis.org/UserGuide/formats/format_reference.html

MDAnalysis User Guide

Trajectories

The standard way to write out trajectories is to:

1. Open a trajectory Writer and specify how many atoms a frame will contain

2. Iterate through the trajectory and write coordinates frame-by-frame with Writer.write()

3. If you do not use the context manager and the with statement below, you then need to close the trajectory with
.close().

For instance, to write out the 𝐶𝛼 atoms to a trajectory in the XTC format:

ca = u.select_atoms('name CA')
with mda.Writer('calphas.xtc', ca.n_atoms) as w:

for ts in u.trajectory:
w.write(ca)

Analysis

MDAnalysis comes with a diverse set of analysis modules, and the building blocks to implement your own.

The majority of these follow a common interface:

1. Initialise the analysis with a Universe and other required parameters.

2. Run the analysis with .run(). Optional arguments are the start frame index, stop frame index, step
size, and toggling verbose. The default is to run analysis on the whole trajectory.

3. Results are stored within the class.

4. Often, a function is available to operate on single frames.

However, not all analysis uses this model. It is important to check the documentation for each analysis. You can
also see examples in the Example gallery.

Below, simple RMSD analysis is shown. The rms module follows the interface above.

RMSD

Not all sub-modules of MDAnalysis are imported with import MDAnalysis. Most analysis modules have to be
imported explicitly.

[35]: from MDAnalysis.analysis import rms

MDAnalysis provides a rmsd() function for calculating the RMSD between two numpy arrays of coordinates.

[36]: bb = u.select_atoms('backbone')

u.trajectory[0] # first frame
first = bb.positions

u.trajectory[-1] #last frame
last = bb.positions

rms.rmsd(first, last)

[36]: 6.852774844656239

16 Chapter 2. Participating

https://www.mdanalysis.org/UserGuide/reading_and_writing.html#output
https://www.mdanalysis.org/UserGuide/analysis
https://mdanalysis.org/UserGuide/examples/analysis/custom_trajectory_analysis.html
https://www.mdanalysis.org/UserGuide/examples/

MDAnalysis User Guide

An RMSD class is also provided to operate on trajectories.

Below, the RMSD class is created.

• The first argument is the AtomGroup or Universe for which the RMSD is calculated.

• As a reference AtomGroup or Universe is not given as the second argument, the default is to align to the
current frame of the first argument. Here it is set to the first frame.

• We choose to align the trajectory over the backbone atoms, and then compute the RMSD for the backbone atoms
(select).

• Then, without re-aligning the trajectory, the RMSD is also computed (groupselections) for the 𝐶𝛼 atoms
(name CA) and every protein atom (protein).

The RMSD is computed when we call .run().

[37]: u.trajectory[0] # set to first frame
rmsd_analysis = rms.RMSD(u, select='backbone', groupselections=['name CA', 'protein'])
rmsd_analysis.run()

[37]: <MDAnalysis.analysis.rms.RMSD at 0x11f297210>

The results are stored in the .rmsd attribute. This is an array with the shape (n_frames, 2 +
n_selections).

[38]: print(rmsd_analysis.rmsd.shape)

(98, 5)

We can interpret this as an array with 98 rows and 5 columns. Each row is the RMSD associated with a frame in the
trajectory. The columns are as follows:

1. Frame number

2. Time (ps)

3. RMSD (backbone)

4. RMSD (C-alpha)

5. RMSD (protein)

We can turn this into a pandas DataFrame and plot the results.

[39]: import pandas as pd

rmsd_df = pd.DataFrame(rmsd_analysis.rmsd[:, 2:],
columns=['Backbone', 'C-alphas', 'Protein'],
index=rmsd_analysis.rmsd[:, 1])

rmsd_df.index.name = 'Time (ps)'
rmsd_df.head()

[39]: Backbone C-alphas Protein
Time (ps)
1.0 6.391203e-07 4.263638e-08 5.443850e-08
2.0 4.636592e-01 4.235205e-01 6.934167e-01
3.0 6.419340e-01 5.939111e-01 8.748416e-01
4.0 7.743983e-01 7.371346e-01 1.052780e+00
5.0 8.588600e-01 8.279498e-01 1.154986e+00

[40]: rmsd_df.plot(title='RMSD')

2.1. Communications 17

MDAnalysis User Guide

[40]: <matplotlib.axes._subplots.AxesSubplot at 0x11fad1e50>

See the analysis documentation for more information.

References

When using MDAnalysis in published work, please cite both these papers:

• N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein. MDAnalysis: A Toolkit for the Analysis
of Molecular Dynamics Simulations. J. Comput. Chem. 32 (2011), 2319–2327. doi:10.1002/jcc.21787

• R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, D. L. Dotson, J. Domanski, S.
Buchoux, I. M. Kenney, and O. Beckstein. MDAnalysis: A Python package for the rapid analysis of molec-
ular dynamics simulations. In S. Benthall and S. Rostrup, editors, Proceedings of the 15th Python in Science
Conference, pages 98-105, Austin, TX, 2016. SciPy. doi:10.25080/Majora-629e541a-00e

MDAnalysis includes many algorithms and modules that should also be individually cited. For example, if you use
the MDAnalysis.analysis.rms or MDAnalysis.analysis.align modules, please cite:

• Douglas L. Theobald. Rapid calculation of RMSD using a quaternion-based characteristic polynomial. Acta
Crystallographica A 61 (2005), 478-480.

• Pu Liu, Dmitris K. Agrafiotis, and Douglas L. Theobald. Fast determination of the optimal rotational matrix for
macromolecular superpositions. J. Comput. Chem. 31 (2010), 1561–1563.

The primary sources of each module will be in their documentation.

Automatic citations with duecredit

Citations can be also be automatically generated using duecredit. Complete installation and usage instructions can
be found in the user guide, but it is simple to generate a list of citations for your python script my_script.py.

$ python -m duecredit my_script.py

This extracts citations into a hidden file, which can then be exported to different formats. For example, to display them
as BibTeX, use the command:

18 Chapter 2. Participating

https://mdanalysis.org/UserGuide/examples/README.html
http://dx.doi.org/10.1002/jcc.21787
http://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://doi.org/10.25080/Majora-629e541a-00e
https://mdanalysis.org/UserGuide/references.html
https://mdanalysis.org/UserGuide/references.html

MDAnalysis User Guide

$ duecredit summary --format=bibtex

2.1.3 Frequently asked questions

Trajectories

Why do the atom positions change over trajectories?

A fundamental concept in MDAnalysis is that at any one time, only one time frame of the trajectory is being accessed.
The trajectory attribute of a Universe is actually (usually) a file reader. Think of the trajectory as a function
𝑋(𝑡) of the frame index 𝑡 that makes the data from this specific frame available. This structure is important because
it allows MDAnalysis to work with trajectory files too large to fit into the computer’s memory. See Trajectories for
more information.

2.1.4 Examples

MDAnalysis maintains a collection of Jupyter notebooks as examples of what the code can do. Each notebook can be
downloaded from the source repository to run on your own computer, or viewed as an online tutorial on the user guide.

Constructing, modifying, and adding to a Universe

MDAnalysis version: 0.20.1

Last updated: November 2019

Sometimes you may want to construct a Universe from scratch, or add attributes that are not read from a file. For
example, you may want to group a Universe into chains, or create custom segments for protein domains.

In this tutorial we:

• create a Universe consisting of water molecules

• merge this with a protein Universe loaded from a file

• create custom segments labeling protein domains

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PDB_small
import nglview as nv
import numpy as np
from IPython.core.display import Image

print("Using MDAnalysis version", mda.__version__)
print("Using NGLView version", nv.__version__)

_ColormakerRegistry()

Using MDAnalysis version 0.20.1
Using NGLView version 2.7.1

Creating and populating a Universe with water

2.1. Communications 19

MDAnalysis User Guide

Creating a blank Universe

The Universe.empty() method creates a blank Universe. The natoms (int) argument must be included. Op-
tional arguments are:

• n_residues (int): number of residues

• n_segments (int): number of segments

• atom_resindex (list): list of resindices for each atom

• residue_segindex (list): list of segindices for each residue

• trajectory (bool): whether to attach a MemoryReader trajectory (default False)

• velocities (bool): whether to include velocities in the trajectory (default False)

• forces (bool): whether to include forces in the trajectory (default False)

We will create a Universe with 1000 water molecules.

[2]: n_residues = 1000
n_atoms = n_residues * 3

create resindex list
resindices = np.repeat(range(n_residues), 3)
assert len(resindices) == n_atoms
print("resindices:", resindices[:10])

all water molecules belong to 1 segment
segindices = [0] * n_residues
print("segindices:", segindices[:10])

resindices: [0 0 0 1 1 1 2 2 2 3]
segindices: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]

[3]: # create the Universe
sol = mda.Universe.empty(n_atoms,

n_residues=n_residues,
atom_resindex=resindices,
residue_segindex=segindices,
trajectory=True) # necessary for adding coordinates

sol

[3]: <Universe with 3000 atoms>

Adding topology attributes

There isn’t much we can do with our current Universe because MDAnalysis has no information on the particle ele-
ments, positions, etc. We can add relevant information manually using TopologyAttrs.

names

[4]: sol.add_TopologyAttr('name', ['O', 'H1', 'H2']*n_residues)
sol.atoms.names

[4]: array(['O', 'H1', 'H2', ..., 'O', 'H1', 'H2'], dtype=object)

elements (“types”)

Elements are typically contained in the type topology attribute.

20 Chapter 2. Participating

MDAnalysis User Guide

[5]: sol.add_TopologyAttr('type', ['O', 'H', 'H']*n_residues)
sol.atoms.types

[5]: array(['O', 'H', 'H', ..., 'O', 'H', 'H'], dtype=object)

residue names (“resnames”)

[6]: sol.add_TopologyAttr('resname', ['SOL']*n_residues)
sol.atoms.resnames

[6]: array(['SOL', 'SOL', 'SOL', ..., 'SOL', 'SOL', 'SOL'], dtype=object)

residue counter (“resids”)

[7]: sol.add_TopologyAttr('resid', list(range(1, n_residues+1)))
sol.atoms.resids

[7]: array([1, 1, 1, ..., 1000, 1000, 1000])

segment/chain names (“segids”)

[8]: sol.add_TopologyAttr('segid', ['SOL'])
sol.atoms.segids

[8]: array(['SOL', 'SOL', 'SOL', ..., 'SOL', 'SOL', 'SOL'], dtype=object)

Adding positions

Positions can simply be assigned, without adding a topology attribute.

The O-H bond length in water is around 0.96 Angstrom, and the bond angle is 104.45°. We can first obtain a set of
coordinates for one molecule, and then translate it for every water molecule.

[9]: # coordinates obtained by building a molecule in the program IQMol
h2o = np.array([[0, 0, 0], # oxygen

[0.95908, -0.02691, 0.03231], # hydrogen
[-0.28004, -0.58767, 0.70556]]) # hydrogen

[10]: grid_size = 10
spacing = 8

coordinates = []

translating h2o coordinates around a grid
for i in range(n_residues):

x = spacing * (i % grid_size)
y = spacing * ((i // grid_size) % grid_size)
z = spacing * (i // (grid_size * grid_size))

xyz = np.array([x, y, z])

coordinates.extend(h2o + xyz.T)

print(coordinates[:10])

[array([0., 0., 0.]), array([0.95908, -0.02691, 0.03231]), array([-0.28004, -0.
→˓58767, 0.70556]), array([8., 0., 0.]), array([8.95908, -0.02691, 0.03231]),
→˓array([7.71996, -0.58767, 0.70556]), array([16., 0., 0.]), array([16.95908, -0.
→˓02691, 0.03231]), array([15.71996, -0.58767, 0.70556]), array([24., 0., 0.])](continues on next page)

2.1. Communications 21

MDAnalysis User Guide

(continued from previous page)

[11]: coord_array = np.array(coordinates)
assert coord_array.shape == (n_atoms, 3)
sol.atoms.positions = coord_array

We can view the atoms with NGLView, a library for visualising molecules. It guesses bonds based on distance.

[12]: sol_view = nv.show_mdanalysis(sol)
sol_view.add_representation('ball+stick', selection='all')
sol_view.center()
sol_view

NGLWidget()

Adding bonds

Currently, the sol universe doesn’t contain any bonds.

[13]: assert not hasattr(sol, 'bonds')

They can be important for defining ‘fragments’, which are groups of atoms where every atom is connected by a bond
to another atom in the group (i.e. what is commonly called a molecule). You can pass a list of tuples of atom indices
to add bonds as a topology attribute.

[14]: bonds = []
for o in range(0, n_atoms, 3):

bonds.extend([(o, o+1), (o, o+2)])

bonds[:10]

[14]: [(0, 1),
(0, 2),
(3, 4),
(3, 5),
(6, 7),
(6, 8),
(9, 10),
(9, 11),
(12, 13),
(12, 14)]

[15]: sol.add_TopologyAttr('bonds', bonds)
sol.bonds

[15]: <TopologyGroup containing 2000 bonds>

The bonds associated with each atom or the bonds within an AtomGroup can be accessed with the bonds attribute:

[16]: print(sol.atoms[0].bonds)
print(sol.atoms[-10:].bonds)

<TopologyGroup containing 2 bonds>
<TopologyGroup containing 7 bonds>

22 Chapter 2. Participating

MDAnalysis User Guide

Merging with a protein

Now we can merge the water with a protein to create a combined system by using MDAnalysis.Merge to combine
AtomGroup instances.

The protein is adenylate kinase (AdK), a phosphotransferase enzyme. [1]

[17]: protein = mda.Universe(PDB_small)
nv.show_mdanalysis(protein)

NGLWidget()

I will translate the centers of both systems to the origin, so they can overlap in space.

[18]: cog = sol.atoms.center_of_geometry()
print('Original solvent center of geometry: ', cog)
sol.atoms.positions -= cog
cog2 = sol.atoms.center_of_geometry()
print('New solvent center of geometry: ', cog2)

Original solvent center of geometry: [36.22634681 35.79514029 36.24595657]
New solvent center of geometry: [2.78155009e-07 -1.27156576e-07 3.97364299e-08]

[19]: cog = protein.atoms.center_of_geometry()
print('Original solvent center of geometry: ', cog)
protein.atoms.positions -= cog
cog2 = protein.atoms.center_of_geometry()
print('New solvent center of geometry: ', cog2)

Original solvent center of geometry: [-3.66508082 9.60502842 14.33355791]
New solvent center of geometry: [8.30580288e-08 3.49225059e-08 2.51332265e-08]

[20]: combined = mda.Merge(protein.atoms, sol.atoms)
combined_view = nv.show_mdanalysis(combined)
combined_view.add_representation("ball+stick", selection="not protein")
combined_view

NGLWidget()

Unfortunately, some water molecules overlap with the protein. We can create a new AtomGroup containing only the
molecules where every atom is further away than 6 angstroms from the protein.

[21]: no_overlap = combined.select_atoms("same resid as (not around 6 protein)")

With this AtomGroup, we can then construct a new Universe.

[22]: u = mda.Merge(no_overlap)
view = nv.show_mdanalysis(u)
view.add_representation("ball+stick", selection="not protein")
view

NGLWidget()

Adding a new segment

Often you may want to assign atoms to a segment or chain – for example, adding chain IDs to a PDB file. This requires
adding a new Segment with Universe.add_Segment.

Adenylate kinase has three domains: CORE, NMP, and LID. As shown in the picture below,[1] these have the residues:

2.1. Communications 23

MDAnalysis User Guide

• CORE: residues 1-29, 60-121, 160-214 (gray)

• NMP: residues 30-59 (blue)

• LID: residues 122-159 (yellow)

[23]: u.segments.segids

[23]: array(['4AKE', 'SOL'], dtype=object)

On examining the Universe, we can see that the protein and solvent are already divided into two segments: protein
(‘4AKE’) and solvent (‘SOL’). We will add three more segments (CORE, NMP, and LID) and assign atoms to them.

First, add a Segment to the Universe with a segid. It will be empty:

[24]: core_segment = u.add_Segment(segid='CORE')
core_segment.atoms

[24]: <AtomGroup with 0 atoms>

Residues can’t be broken across segments. To put atoms in a segment, assign the segments attribute of their residues:

[25]: core_atoms = u.select_atoms('resid 1:29 or resid 60:121 or resid 160-214')
core_atoms.residues.segments = core_segment
core_segment.atoms

[25]: <AtomGroup with 2744 atoms>

[26]: nmp_segment = u.add_Segment(segid='NMP')
lid_segment = u.add_Segment(segid='LID')

nmp_atoms = u.select_atoms('resid 30:59')
nmp_atoms.residues.segments = nmp_segment

lid_atoms = u.select_atoms('resid 122:159')
lid_atoms.residues.segments = lid_segment

We can check that we have the correct domains by visualising the protein. NGLView handles molecular structure by
converting the MDAnalysis atoms into a PDB, where the chainID of each atom is the first letter of the segment that it
belongs to.

[27]: domain_view = nv.show_mdanalysis(u)
domain_view.color_by('chainID')
domain_view

NGLWidget()

Tiling into a larger Universe

We can use MDAnalysis to tile out a smaller Universe into a bigger one, similarly to editconf in GROMACS. To
start off, we need to figure out the box size. The default in MDAnalysis is a zero vector. The first three numbers
represent the length of each axis, and the last three represent the alpha, beta, and gamma angles of a triclinic box.

[28]: u.dimensions

[28]: array([0., 0., 0., 0., 0., 0.], dtype=float32)

We know that our system is cubic in shape, so we can assume angles of 90°. The difference between the lowest and
highest x-axis positions is roughly 73 Angstroms.

24 Chapter 2. Participating

MDAnalysis User Guide

[29]: max(u.atoms.positions[:, 0]) - min(u.atoms.positions[:, 0])

[29]: 73.23912

So we can set our dimensions.

[30]: u.dimensions = [73, 73, 73, 90, 90, 90]

To tile out a Universe, we need to copy it and translate the atoms by the box dimensions. We can then merge the cells
into one large Universe and assign new dimensions.

[31]: def tile_universe(universe, n_x, n_y, n_z):
box = universe.dimensions[:3]
copied = []
for x in range(n_x):

for y in range(n_y):
for z in range(n_z):

u_ = universe.copy()
move_by = box*(x, y, z)
u_.atoms.translate(move_by)
copied.append(u_.atoms)

new_universe = mda.Merge(*copied)
new_box = box*(n_x, n_y, n_z)
new_universe.dimensions = list(new_box) + [90]*3
return new_universe

Here is a 2 x 2 x 2 version of our original unit cell:

[32]: tiled = tile_universe(u, 2, 2, 2)
nv.show_mdanalysis(tiled)

NGLWidget()

References

[1]: Beckstein O, Denning EJ, Perilla JR, Woolf TB. Zipping and unzipping of adenylate kinase: atomistic insights
into the ensemble of open<–>closed transitions. J Mol Biol. 2009;394(1):160–176. doi:10.1016/j.jmb.2009.09.009

Acknowledgments

The Universe tiling code was modified from @richardjgowers’s gist on the issue in 2016.

Transformations

Centering a trajectory in the box

Here we use MDAnalysis transformations to make a protein whole, center it in the box, and then wrap the water back
into the box. We then look at how to do this on-the-fly.

Last executed: Feb 07, 2020 with MDAnalysis 0.20.2-dev0

Last updated: January 2020

Minimum version of MDAnalysis: 0.19.0

2.1. Communications 25

https://dx.doi.org/10.1016%2Fj.jmb.2009.09.009
https://github.com/richardjgowers
https://gist.github.com/richardjgowers/b16b871259451e85af0bd2907d30de91

MDAnalysis User Guide

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:

• nglview ([NCR18])

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import TPR, XTC
import numpy as np
import nglview as nv

_ColormakerRegistry()

Loading files

The test files we will be working with here are trajectories of a adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09])

For the step-by-step transformations, we need to load the trajectory into memory so that our changes to the coordinates
persist. If your trajectory is too large for that, see the on-the-fly transformation section for how to do this out-of-
memory.

[2]: u = mda.Universe(TPR, XTC, in_memory=True)

Before transformation

If you have NGLView installed, you can view the trajectory as it currently is.

[]: view = nv.show_mdanalysis(u)
view.add_representation('point', 'resname SOL')
view.center()
view

Otherwise, we embed a gif of it below.

For easier analysis and nicer visualisation, we want to center this protein in the box.

Unwrapping the protein

The first step is to “unwrap” the protein from the border of the box, to make the protein whole. MDAnalysis provides
the AtomGroup.unwrap function to do this easily. Note that this function requires your universe to have bonds in
it.

We loop over the trajectory to unwrap for each frame.

[3]: protein = u.select_atoms('protein')

for ts in u.trajectory:
protein.unwrap(compound='fragments')

26 Chapter 2. Participating

http://nglviewer.org/nglview/latest/

MDAnalysis User Guide

As you can see, the protein is now whole, but not centered.

[]: unwrapped = nv.show_mdanalysis(u)
unwrapped.add_representation('point', 'resname SOL')
unwrapped.center()
unwrapped

Over the course of the trajectory it leaves the box.

Centering in the box

The next step is to center the protein in the box. We calculate the center-of-mass of the protein and the center of the
box for each timestep. We then move all the atoms so that the protein center-of-mass is in the center of the box.

If you don’t have masses in your trajectory, try using the center_of_geometry.

[4]: for ts in u.trajectory:
protein_center = protein.center_of_mass(pbc=True)
dim = ts.triclinic_dimensions
box_center = np.sum(dim, axis=0) / 2
u.atoms.translate(box_center - protein_center)

The protein is now in the center of the box, but the solvent is likely outside it, as we have just moved all the atoms.

[]: centered = nv.show_mdanalysis(u)
centered.add_representation('point', 'resname SOL')
centered.center()
centered

Wrapping the solvent back into the box

Luckily, MDAnalysis also has AtomGroup.wrap to wrap molecules back into the box. Our trajectory has dimen-
sions defined, which the function will find automatically. If your trajectory does not, or you wish to use a differently
sized box, you can pass in a box with dimensions in the form [lx, ly, lz, alpha, beta, gamma].

[5]: not_protein = u.select_atoms('not protein')

for ts in u.trajectory:
not_protein.wrap(compound='residues')

And now it is centered!

[]: wrapped = nv.show_mdanalysis(u)
wrapped.add_representation('point', 'resname SOL')
wrapped.center()
wrapped

2.1. Communications 27

MDAnalysis User Guide

Doing all this on-the-fly

Running all the transformations above can be difficult if your trajectory is large, or your computational resources are
limited. Use on-the-fly transformations to keep your data out-of-memory.

Some common transformations are defined in MDAnalysis.transformations.

[7]: import MDAnalysis.transformations as trans

We re-load our universe.

[8]: u2 = mda.Universe(TPR, XTC)

protein2 = u2.select_atoms('protein')
not_protein2 = u2.select_atoms('not protein')

If you are using MDAnalysis from version 0.21.0 onwards, the MDAnalysis.transformations module con-
tains wrap and unwrap functions. If not, we need to define a transformation ourselves.

A transformation is a function takes a MDAnalysis.coordinates.base.Timestep of a trajectory, modifies
the positions, and returns the timestep.

[9]: def unwrap(ts):
protein2.unwrap()
return ts

def wrap(ts):
not_protein2.wrap()
return ts

If you need arguments besides the timestep, you can return a wrapped function. The outer function contains your other
arguments. The inner wrapped_function function only takes the ts argument and returns it, as usual.

[10]: def unwrap_atomgroup(ag):
def wrapped_function(ts):

ag.unwrap()
return ts

return wrapped_function

def wrap_atomgroup(ag):
def wrapped_function(ts):

ag.wrap()
return ts

return wrapped_function

At this point, you can pass your transformations into your trajectory. You can only use add_transformations
once, so pass them all in at once.

[11]: transforms = [unwrap_atomgroup(protein2),
trans.center_in_box(protein2, wrap=True),
wrap_atomgroup(not_protein2)]

u2.trajectory.add_transformations(*transforms)

[]: otf = nv.show_mdanalysis(u2)
otf.add_representation('point', 'resname SOL')
otf.center()
otf

28 Chapter 2. Participating

MDAnalysis User Guide

References

[1] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[2] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[3] Hai Nguyen, David A Case, and Alexander S Rose. NGLview–interactive molecular graphics for Jupyter note-
books. Bioinformatics, 34(7):1241–1242, April 2018. 00024. URL: https://academic.oup.com/bioinformatics/article/
34/7/1241/4721781, doi:10.1093/bioinformatics/btx789.

[4] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

Alignments and RMS fitting

The MDAnalysis.analysis.align and MDAnalysis.analysis.rms modules contain the functions used
for aligning structures, aligning trajectories, and calculating root mean squared quantities.

Note: These modules use the fast QCP algorithm to calculate the root mean square distance (RMSD) between two
coordinate sets [The05] and the rotation matrix R that minimizes the RMSD [LAT09]. Please cite these references
when using these modules.

Aligning a structure to another

We use align.alignto to align a structure to another.

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: February 2020

Minimum version of MDAnalysis: 0.17.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for molecular visualisation:

• nglview ([NCR18])

Note

2.1. Communications 29

https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787
https://academic.oup.com/bioinformatics/article/34/7/1241/4721781
https://academic.oup.com/bioinformatics/article/34/7/1241/4721781
https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://www.mdanalysis.org/docs/documentation_pages/analysis/align.html#module-MDAnalysis.analysis.align
https://www.mdanalysis.org/docs/documentation_pages/analysis/rms.html#module-MDAnalysis.analysis.rms
http://nglviewer.org/nglview/latest

MDAnalysis User Guide

MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]) and a rotation matrix R that
minimises the RMSD ([LAT09]). Please cite ([The05]) and ([LAT09]) when using the MDAnalysis.analysis.
align module in published work.

[1]: import MDAnalysis as mda
from MDAnalysis.analysis import align
from MDAnalysis.tests.datafiles import CRD, PSF, DCD, DCD2
import nglview as nv

_ColormakerRegistry()

Loading files

The test files we will be working with here are trajectories of a adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09]) The trajectories sample a transition from a closed to an open conformation.

[2]: adk_open = mda.Universe(CRD, DCD2)
nv.show_mdanalysis(adk_open)

NGLWidget(max_frame=101)

[3]: adk_closed = mda.Universe(PSF, DCD)
nv.show_mdanalysis(adk_closed.atoms)

NGLWidget(max_frame=97)

Currently, the proteins are not aligned to each other. The difference becomes even more obvious when the closed
conformation is compared to the open. Below, we set adk_open to the last frame and see the relative positions of
each protein in a merged Universe.

[4]: adk_open.trajectory[-1] # last frame
merged = mda.Merge(adk_open.atoms, adk_closed.atoms)
nv.show_mdanalysis(merged)

NGLWidget()

Aligning a structure with align.alignto

alignto aligns the mobile AtomGroup to the target AtomGroup by minimising the RMSD. It returns (old_rmsd,
new_rmsd).

[5]: align.alignto(adk_open, # mobile
adk_closed, # reference
select='name CA') # selection to operate on

[5]: (21.712154435976014, 6.817293751703893)

[6]: nv.show_mdanalysis(mda.Merge(adk_open.atoms, adk_closed.atoms))

NGLWidget()

However, positions are set temporarily. If we flip to the first frame of adk_open and back to the last frame, we can
see that it has returned to its original location.

30 Chapter 2. Participating

MDAnalysis User Guide

[7]: adk_open.trajectory[0] # set to first frame
adk_open.trajectory[-1] # set to last frame
nv.show_mdanalysis(mda.Merge(adk_open.atoms, adk_closed.atoms))

NGLWidget()

You can save the aligned positions by writing them out to a PDB file and creating a new Universe.

[8]: align.alignto(adk_open, adk_closed, select='name CA')
adk_open.atoms.write('aligned.pdb')
nv.show_mdanalysis(mda.Universe('aligned.pdb'))

NGLWidget()

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Pu Liu, Dimitris K. Agrafiotis, and Douglas L. Theobald. Fast determination of the optimal rotational matrix for
macromolecular superpositions. Journal of Computational Chemistry, pages n/a–n/a, 2009. URL: http://doi.wiley.
com/10.1002/jcc.21439, doi:10.1002/jcc.21439.

[4] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[5] Hai Nguyen, David A Case, and Alexander S Rose. NGLview–interactive molecular graphics for Jupyter note-
books. Bioinformatics, 34(7):1241–1242, April 2018. 00024. URL: https://academic.oup.com/bioinformatics/article/
34/7/1241/4721781, doi:10.1093/bioinformatics/btx789.

[6] Douglas L. Theobald. Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. Acta
Crystallographica Section A Foundations of Crystallography, 61(4):478–480, July 2005. 00127. URL: http://scripts.
iucr.org/cgi-bin/paper?S0108767305015266, doi:10.1107/S0108767305015266.

Aligning a trajectory to itself

We use align.AlignTraj to align a trajectory to a reference frame and write it to a file.

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: February 2020

Minimum version of MDAnalysis: 0.17.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

2.1. Communications 31

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21439
http://doi.wiley.com/10.1002/jcc.21439
http://doi.wiley.com/10.1002/jcc.21787
https://academic.oup.com/bioinformatics/article/34/7/1241/4721781
https://academic.oup.com/bioinformatics/article/34/7/1241/4721781
http://scripts.iucr.org/cgi-bin/paper?S0108767305015266
http://scripts.iucr.org/cgi-bin/paper?S0108767305015266

MDAnalysis User Guide

Note

MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]) and a rotation matrix R that
minimises the RMSD ([LAT09]). Please cite ([The05]) and ([LAT09]) when using the MDAnalysis.analysis.
align module in published work.

[1]: import MDAnalysis as mda
from MDAnalysis.analysis import align, rms
from MDAnalysis.tests.datafiles import PSF, DCD

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09]) The trajectory samples a transition from a closed to an open conformation.

[2]: mobile = mda.Universe(PSF, DCD)
ref = mda.Universe(PSF, DCD)

Aligning a trajectory to the first frame

While align.alignto aligns structures, or a frame of a trajectory, align.AlignTraj efficiently aligns an
entire trajectory to a reference.

We first check the RMSD of our unaligned trajectory, we can compare results. The code below sets the mobile
trajectory to the last frame by indexing the last timestep, ref to the first frame by indexing the first timestep, and
computes the root mean squared deviation between the alpha-carbon positions.

[3]: mobile.trajectory[-1] # set mobile trajectory to last frame
ref.trajectory[0] # set reference trajectory to first frame

mobile_ca = mobile.select_atoms('name CA')
ref_ca = ref.select_atoms('name CA')
rms.rmsd(mobile_ca.positions, ref_ca.positions, superposition=False)

[3]: 6.842901296805416

Now we can align the trajectory. We have already set ref to the first frame. In the cell below, we load the positions
of the trajectory into memory so we can modify the trajectory in Python.

[4]: aligner = align.AlignTraj(mobile, ref, select='name CA', in_memory=True).run()

If you don’t have enough memory to do that, write the trajectory out to a file and reload it into MDAnalysis (uncom-
ment the cell below). Otherwise, you don’t have to run it.

[5]: # aligner = align.AlignTraj(mobile, ref, select='backbone',
filename='aligned_to_first_frame.dcd').run()
mobile = mda.Universe(PSF, 'aligned_to_first_frame.dcd')

Now we can see that the RMSD has reduced (minorly).

[6]: mobile.trajectory[-1] # set mobile trajectory to last frame
ref.trajectory[0] # set reference trajectory to first frame

(continues on next page)

32 Chapter 2. Participating

MDAnalysis User Guide

(continued from previous page)

mobile_ca = mobile.select_atoms('name CA')
ref_ca = ref.select_atoms('name CA')
rms.rmsd(mobile_ca.positions, ref_ca.positions, superposition=False)

[6]: 6.814428283558119

Aligning a trajectory to the third frame

We can align the trajectory to any frame: for example, the third one. The procedure is much the same, except that we
must set ref to the third frame by indexing the third timestep.

[7]: mobile.trajectory[-1] # set mobile trajectory to last frame
ref.trajectory[2] # set reference trajectory to third frame

rms.rmsd(mobile.atoms.positions, ref.atoms.positions, superposition=False)

[7]: 6.72985428871556

[8]: aligner = align.AlignTraj(mobile, ref, select='all', in_memory=True).run()

[9]: mobile.trajectory[-1] # set mobile trajectory to last frame
ref.trajectory[2] # set reference trajectory to third frame

rms.rmsd(mobile.atoms.positions, ref.atoms.positions, superposition=False)

[9]: 6.724951326370686

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Pu Liu, Dimitris K. Agrafiotis, and Douglas L. Theobald. Fast determination of the optimal rotational matrix for
macromolecular superpositions. Journal of Computational Chemistry, pages n/a–n/a, 2009. URL: http://doi.wiley.
com/10.1002/jcc.21439, doi:10.1002/jcc.21439.

[4] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[5] Douglas L. Theobald. Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. Acta
Crystallographica Section A Foundations of Crystallography, 61(4):478–480, July 2005. 00127. URL: http://scripts.
iucr.org/cgi-bin/paper?S0108767305015266, doi:10.1107/S0108767305015266.

2.1. Communications 33

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21439
http://doi.wiley.com/10.1002/jcc.21439
http://doi.wiley.com/10.1002/jcc.21787
http://scripts.iucr.org/cgi-bin/paper?S0108767305015266
http://scripts.iucr.org/cgi-bin/paper?S0108767305015266

MDAnalysis User Guide

Aligning a trajectory to a reference

We use align.AlignTraj to align a trajectory to a reference frame and write it to a file.

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: February 2020

Minimum version of MDAnalysis: 0.17.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for molecular visualisation:

• nglview ([NCR18])

Note

MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]) and a rotation matrix R that
minimises the RMSD ([LAT09]). Please cite ([The05]) and ([LAT09]) when using the MDAnalysis.analysis.
align module in published work.

[1]: import MDAnalysis as mda
from MDAnalysis.analysis import align
from MDAnalysis.tests.datafiles import CRD, PSF, DCD, DCD2
import nglview as nv

_ColormakerRegistry()

Loading files

The test files we will be working with here are trajectories of a adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09]) The trajectories sample a transition from a closed to an open conformation.

[2]: adk_open = mda.Universe(CRD, DCD2)
adk_closed = mda.Universe(PSF, DCD)

Currently, the proteins are not aligned to each other. The difference becomes obvious when the closed conformation
is compared to the open. Below, we set adk_open to the last frame and see the relative positions of each protein in a
merged Universe.

[3]: adk_open.trajectory[-1] # last frame
merged = mda.Merge(adk_open.atoms, adk_closed.atoms)
nv.show_mdanalysis(merged)

NGLWidget()

Aligning a trajectory with AlignTraj

While align.alignto aligns structures, or a frame of a trajectory, align.AlignTraj efficiently aligns an
entire trajectory to a reference.

34 Chapter 2. Participating

http://nglviewer.org/nglview/latest

MDAnalysis User Guide

[4]: align.AlignTraj(adk_closed, adk_open,
select='name CA',
filename='aligned.dcd').run()

[4]: <MDAnalysis.analysis.align.AlignTraj at 0x1132587f0>

[5]: aligned = mda.Universe(PSF, 'aligned.dcd')
aligned.segments.segids = ['Aligned']
adk_open.segments.segids = ['Open']

[6]: merged2 = mda.Merge(aligned.atoms, adk_open.atoms)
nv.show_mdanalysis(merged2)

NGLWidget()

Copying coordinates into a new Universe

MDAnalysis.Merge does not automatically load coordinates for a trajectory. We can do this ourselves. Below, we
copy the coordinates of the 98 frames in the aligned universe.

[7]: from MDAnalysis.analysis.base import AnalysisFromFunction
import numpy as np
from MDAnalysis.coordinates.memory import MemoryReader

def copy_coords(ag):
return ag.positions.copy()

aligned_coords = AnalysisFromFunction(copy_coords,
aligned.atoms).run().results

print(aligned_coords.shape)

(98, 3341, 3)

To contrast, we will keep the open conformation static.

[8]: adk_coords = adk_open.atoms.positions.copy()
adk_coords.shape

[8]: (3341, 3)

Because there are 98 frames of the aligned Universe, we copy the coordinates of the adk_open positions and
stack them.

[9]: adk_traj_coords = np.stack([adk_coords] * 98)
adk_traj_coords.shape

[9]: (98, 3341, 3)

We join aligned_coords and adk_traj_coords on the second axis with np.hstack and load the coordi-
nates into memory into the merged2 Universe.

[10]: merged_coords = np.hstack([aligned_coords,
adk_traj_coords])

merged2.load_new(merged_coords, format=MemoryReader)
m2_view = nv.show_mdanalysis(merged2)
m2_view

2.1. Communications 35

MDAnalysis User Guide

NGLWidget(max_frame=97)

Online notebooks do not show the molecule trajectory, but here you can use nglview.contrib.movie.
MovieMaker to make a gif of the trajectory. This requires you to install moviepy.

[11]: from nglview.contrib.movie import MovieMaker
movie = MovieMaker(m2_view, output='merged.gif', in_memory=True)
movie.make()

IntProgress(value=0, description='Rendering ...', max=97)

Writing trajectories to a file

We can also save this new trajectory to a file.

[12]: with mda.Writer('aligned.xyz', merged2.atoms.n_atoms) as w:
for ts in merged2.trajectory:

w.write(merged2.atoms)

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Pu Liu, Dimitris K. Agrafiotis, and Douglas L. Theobald. Fast determination of the optimal rotational matrix for
macromolecular superpositions. Journal of Computational Chemistry, pages n/a–n/a, 2009. URL: http://doi.wiley.
com/10.1002/jcc.21439, doi:10.1002/jcc.21439.

[4] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[5] Hai Nguyen, David A Case, and Alexander S Rose. NGLview–interactive molecular graphics for Jupyter note-
books. Bioinformatics, 34(7):1241–1242, April 2018. 00024. URL: https://academic.oup.com/bioinformatics/article/
34/7/1241/4721781, doi:10.1093/bioinformatics/btx789.

[6] Douglas L. Theobald. Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. Acta
Crystallographica Section A Foundations of Crystallography, 61(4):478–480, July 2005. 00127. URL: http://scripts.
iucr.org/cgi-bin/paper?S0108767305015266, doi:10.1107/S0108767305015266.

Calculating the root mean square deviation of atomic structures

We calculate the RMSD of domains in adenylate kinase as it transitions from an open to closed structure, and look at
calculating weighted RMSDs.

36 Chapter 2. Participating

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21439
http://doi.wiley.com/10.1002/jcc.21439
http://doi.wiley.com/10.1002/jcc.21787
https://academic.oup.com/bioinformatics/article/34/7/1241/4721781
https://academic.oup.com/bioinformatics/article/34/7/1241/4721781
http://scripts.iucr.org/cgi-bin/paper?S0108767305015266
http://scripts.iucr.org/cgi-bin/paper?S0108767305015266

MDAnalysis User Guide

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: January 2020

Minimum version of MDAnalysis: 0.17.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:

• pandas

Note

MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]). Please cite ([The05]) when using
the MDAnalysis.analysis.align module in published work.

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD, CRD
from MDAnalysis.analysis import rms

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09]) The trajectory DCD samples a transition from a closed to an open conformation. AdK has three do-
mains:

• CORE

• LID: an ATP-binding domain

• NMP: an AMP-binding domain

The LID and NMP domains move around the stable CORE as the enzyme transitions between the opened and closed
conformations. One way to quantify this movement is by calculating the root mean square deviation (RMSD) of
atomic positions.

[2]: u = mda.Universe(PSF, DCD) # closed AdK (PDB ID: 1AKE)
ref = mda.Universe(PSF, CRD) # open AdK (PDB ID: 4AKE)

RMSD between two sets of coordinates

The MDAnalysis.analysis.rms.rmsd function returns the root mean square deviation (in Angstrom) between
two sets of coordinates. Here, we calculate the RMSD between the backbone atoms of the open and closed confor-
mations of AdK. Only considering the backbone atoms is often more helpful than calculating the RMSD for all the
atoms, as movement in amino acid side-chains isn’t indicative of overall conformational change.

[3]: rms.rmsd(u.select_atoms('backbone').positions, # coordinates to align
ref.select_atoms('backbone').positions, # reference coordinates
center=True, # subtract the center of geometry
superposition=True) # superimpose coordinates

2.1. Communications 37

https://pandas.pydata.org

MDAnalysis User Guide

[3]: 6.8236868672615705

RMSD of a trajectory with multiple selections

It is more efficient to use the MDAnalysis.analysis.rms.RMSD class to calculate the RMSD of an entire
trajectory to a single reference point, than to use the the MDAnalysis.analysis.rms.rmsd function.

The rms.RMSD class first performs a rotational and translational alignment of the target trajectory to the reference
universe at ref_frame, using the atoms in select to determine the transformation. The RMSD of the select
selection is calculated. Then, without further alignment, the RMSD of each group in groupselections is calcu-
lated.

[4]: CORE = 'backbone and (resid 1-29 or resid 60-121 or resid 160-214)'
LID = 'backbone and resid 122-159'
NMP = 'backbone and resid 30-59'

[5]: R = rms.RMSD(u, # universe to align
u, # reference universe or atomgroup
select='backbone', # group to superimpose and calculate RMSD
groupselections=[CORE, LID, NMP], # groups for RMSD
ref_frame=0) # frame index of the reference

R.run()

[5]: <MDAnalysis.analysis.rms.RMSD at 0x119db9278>

The data is saved in R.rmsd as an array.

[6]: R.rmsd.shape

[6]: (98, 6)

R.rmsd has a row for each timestep. The first two columns of each row are the frame index of the time step, and the
time (which is guessed in trajectory formats without timesteps). The third column is RMSD of select. The last few
columns are the RMSD of the groups in groupselections.

Plotting the data

We can easily plot this data using the common data analysis package pandas.

[7]: import pandas as pd
the next line is necessary to display plots in Jupyter
%matplotlib inline

We can turn the R.rmsd array into a DataFrame and label each column.

[8]: df = pd.DataFrame(R.rmsd,
columns=['Frame', 'Time (ns)',

'Backbone', 'CORE',
'LID', 'NMP'])

df

[8]: Frame Time (ns) Backbone CORE LID NMP
0 0.0 0.000000 7.379926e-07 4.559829e-08 1.137940e-07 7.653031e-08
1 1.0 1.000000 4.636592e-01 4.550182e-01 4.871914e-01 4.745572e-01

(continues on next page)

38 Chapter 2. Participating

https://pandas.pydata.org
https://pandas.pydata.org/pandas-docs/stable/getting_started/dsintro.html#dataframe

MDAnalysis User Guide

(continued from previous page)

2 2.0 2.000000 6.419340e-01 5.754419e-01 7.940987e-01 7.270194e-01
3 3.0 3.000000 7.743983e-01 6.739184e-01 1.010261e+00 8.795031e-01
4 4.0 4.000000 8.588600e-01 7.318859e-01 1.168398e+00 9.612986e-01
..
93 93.0 92.999992 6.817898e+00 3.504430e+00 1.143376e+01 1.029267e+01
94 94.0 93.999992 6.804211e+00 3.480681e+00 1.141134e+01 1.029879e+01
95 95.0 94.999992 6.807987e+00 3.508946e+00 1.137593e+01 1.031958e+01
96 96.0 95.999992 6.821205e+00 3.498082e+00 1.139156e+01 1.037768e+01
97 97.0 96.999991 6.820322e+00 3.507120e+00 1.138473e+01 1.036821e+01

[98 rows x 6 columns]

[9]: ax = df.plot(x='Frame', y=['Backbone', 'CORE', 'LID', 'NMP'],
kind='line')

ax.set_ylabel('RMSD (Angstrom)')

[9]: Text(0, 0.5, 'RMSD (Angstrom)')

Weighted RMSD of a trajectory

Mass

You can also calculate the weighted RMSD of a trajectory using a custom array of weights. (Note: up until version
0.21.0, you cannot calculate the weighted RMSD of groupselections.)

[10]: R_mass = rms.RMSD(u, u,
select='protein and name CA',
weights='mass')

R_mass.run()

[10]: <MDAnalysis.analysis.rms.RMSD at 0x11e61edd8>

[11]: df_mass = pd.DataFrame(R_mass.rmsd,
columns=['Frame',

'Time (ns)',
'C-alphas'])

(continues on next page)

2.1. Communications 39

MDAnalysis User Guide

(continued from previous page)

ax_mass = df_mass.plot(x='Frame', y='C-alphas')
ax_mass.set_ylabel('Mass-weighted RMSD (Angstrom)')

[11]: Text(0, 0.5, 'Mass-weighted RMSD (Angstrom)')

Charge

You can also pass in an array of values for the weights. This must have the same length as the number of atoms in
select.

[12]: ag = u.select_atoms('protein and name CA')
ag.charges.shape

[12]: (214,)

[13]: R_charge = rms.RMSD(u, u,
select='protein and name CA',
weights=ag.charges)

R_charge.run()

[13]: <MDAnalysis.analysis.rms.RMSD at 0x11e5c34e0>

[14]: df_charge = pd.DataFrame(R_charge.rmsd,
columns=['Frame',

'Time (ns)',
'C-alphas'])

ax_charge = df_charge.plot(x='Frame', y='C-alphas')
ax_charge.set_ylabel('Charge-weighted RMSD (Angstrom)')

[14]: Text(0, 0.5, 'Charge-weighted RMSD (Angstrom)')

40 Chapter 2. Participating

MDAnalysis User Guide

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[4] Douglas L. Theobald. Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. Acta
Crystallographica Section A Foundations of Crystallography, 61(4):478–480, July 2005. 00127. URL: http://scripts.
iucr.org/cgi-bin/paper?S0108767305015266, doi:10.1107/S0108767305015266.

Calculating the pairwise RMSD of a trajectory

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: January 2020

Minimum version of MDAnalysis: 0.17.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for data visualisation:

• matplotlib

2.1. Communications 41

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787
http://scripts.iucr.org/cgi-bin/paper?S0108767305015266
http://scripts.iucr.org/cgi-bin/paper?S0108767305015266

MDAnalysis User Guide

Note

MDAnalysis implements RMSD calculation using the fast QCP algorithm ([The05]). Please cite ([The05]) when using
the MDAnalysis.analysis.align module in published work.

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import diffusionmap, align
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09]) The trajectory DCD samples a transition from a closed to an open conformation.

[2]: u = mda.Universe(PSF, DCD) # closed AdK (PDB ID: 1AKE)

Pairwise RMSD

Pairwise RMSDs are an effective way to quickly view similarities and differences in conformations (as measured by
RMSD) across a trajectory.

First, you need to align the trajectory.

[3]: aligner = align.AlignTraj(u, u, select='name CA',
in_memory=True).run()

We can then calculate a pairwise RMSD matrix with the diffusionmap.DistanceMatrix class, by using the
default the rms.rmsd metric.

[4]: matrix = diffusionmap.DistanceMatrix(u, select='name CA').run()

Step 98/98 [100.0%]

The results array is in matrix.dist_matrix as a square array with the shape (#n_frames, #n_frame).

[5]: matrix.dist_matrix.shape

[5]: (98, 98)

We can use the common plotting package matplotlib to create a heatmap from this array.

[6]: plt.imshow(matrix.dist_matrix, cmap='viridis')
plt.xlabel('Frame')
plt.ylabel('Frame')
plt.colorbar(label='RMSD (Angstrom)')

[6]: <matplotlib.colorbar.Colorbar at 0x11bccbeb8>

42 Chapter 2. Participating

https://matplotlib.org/3.1.1/gallery/index.html

MDAnalysis User Guide

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[4] Douglas L. Theobald. Rapid calculation of RMSDs using a quaternion-based characteristic polynomial. Acta
Crystallographica Section A Foundations of Crystallography, 61(4):478–480, July 2005. 00127. URL: http://scripts.
iucr.org/cgi-bin/paper?S0108767305015266, doi:10.1107/S0108767305015266.

Distances and contacts

The MDAnalysis.analysis.distances module provides functions to rapidly compute distances. These
largely take in coordinate arrays.

Atom-wise distances between matching AtomGroups

Here we compare the distances between alpha-carbons of the enzyme adenylate kinase in its open and closed confor-
mations. distances.dist can be used to calculate distances between atom groups with the same number of atoms
within them.

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: January 2020

2.1. Communications 43

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787
http://scripts.iucr.org/cgi-bin/paper?S0108767305015266
http://scripts.iucr.org/cgi-bin/paper?S0108767305015266
https://www.mdanalysis.org/docs/documentation_pages/analysis/distances.html#module-MDAnalysis.analysis.distances

MDAnalysis User Guide

Minimum version of MDAnalysis: 0.19.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:

• matplotlib

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PDB_small, PDB_closed
from MDAnalysis.analysis import distances

import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09]) AdK has three domains:

• CORE

• LID: an ATP-binding domain (residues 122-159)

• NMP: an AMP-binding domain (residues 30-59)

The LID and NMP domains move around the stable CORE as the enzyme transitions between the opened and closed
conformations.

[2]: u1 = mda.Universe(PDB_small) # open AdK
u2 = mda.Universe(PDB_closed) # closed AdK

Calculating the distance between CA atoms

We select the atoms named ‘CA’ of each Universe.

[3]: ca1 = u1.select_atoms('name CA')
ca2 = u2.select_atoms('name CA')

distances.dist returns the residue numbers of both selections given. The offset keyword adds an offset to
these residue numbers to help with comparison to each other and other file formats. Here we are happy with our residue
numbers, so we use the default offset of 0. (See the documentation of distances.dist for more information.)

[4]: resids1, resids2, dist = distances.dist(ca1, ca2,
offset=0) # for residue numbers

Plotting

Below, we plot the distance over the residue numbers and highlight the LID and NMP domains of the protein. The
LID domain in particular moves a significant distance between its opened and closed conformations.

44 Chapter 2. Participating

https://matplotlib.org

MDAnalysis User Guide

[5]: plt.plot(resids1, dist)
plt.ylabel('Ca distance (Angstrom)')
plt.axvspan(122, 159, zorder=0, alpha=0.2, color='orange', label='LID')
plt.axvspan(30, 59, zorder=0, alpha=0.2, color='green', label='NMP')
plt.legend()

[5]: <matplotlib.legend.Legend at 0x11d3e2588>

Calculating the distance with periodic boundary conditions

It is common to want to calculate distances with the minimum image convention. To do this, you must pass the unitcell
dimensions of the system to the box keyword, even if your Universe has dimensions defined.

This should have the format: [lx, ly, lz, alpha, beta, gamma], where the first three numbers are the
box lengths along each axis and the last three are the angles of the box.

[6]: resids1_box, resids2_box, dist_box = distances.dist(ca1, ca2,
box=[10, 10, 10, 90, 90, 90])

Plotting

[7]: plt.plot(resids1_box, dist_box)
plt.ylabel('Ca distance (Angstrom)')
plt.axvspan(122, 159, zorder=0, alpha=0.2, color='orange', label='LID')
plt.axvspan(30, 59, zorder=0, alpha=0.2, color='green', label='NMP')
plt.legend()

[7]: <matplotlib.legend.Legend at 0x11d40e6a0>

2.1. Communications 45

MDAnalysis User Guide

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

All distances between two selections

Here we use distances.distance_array to quantify the distances between each atom of a target set to each
atom in a reference set, and show how we can extend that to calculating the distances between the centers-of-mass of
residues.

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: January 2020

Minimum version of MDAnalysis: 0.19.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:

• matplotlib

46 Chapter 2. Participating

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787
https://matplotlib.org

MDAnalysis User Guide

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PDB_small
from MDAnalysis.analysis import distances

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09]) AdK has three domains:

• CORE

• LID: an ATP-binding domain (residues 122-159)

• NMP: an AMP-binding domain (residues 30-59)

[2]: u = mda.Universe(PDB_small) # open AdK

Calculating atom-to-atom distances between non-matching coordinate arrays

We select the alpha-carbon atoms of each domain.

[3]: LID_ca = u.select_atoms('name CA and resid 122-159')
NMP_ca = u.select_atoms('name CA and resid 30-59')

n_LID = len(LID_ca)
n_NMP = len(NMP_ca)
print('LID has {} residues and NMP has {} residues'.format(n_LID, n_NMP))

LID has 38 residues and NMP has 30 residues

distances.distance_array will produce an array with shape (n, m) distances if there are n positions in the
reference array and m positions in the other configuration. If you want to calculate distances following the minimum
image convention, you must pass the universe dimensions into the box keyword.

[4]: dist_arr = distances.distance_array(LID_ca.positions, # reference
NMP_ca.positions, # configuration
box=u.dimensions)

dist_arr.shape

[4]: (38, 30)

Plotting distance as a heatmap

[5]: fig, ax = plt.subplots()
im = ax.imshow(dist_arr, origin='upper')

add residue ID labels to axes
tick_interval = 5
ax.set_yticks(np.arange(n_LID)[::tick_interval])

(continues on next page)

2.1. Communications 47

MDAnalysis User Guide

(continued from previous page)

ax.set_xticks(np.arange(n_NMP)[::tick_interval])
ax.set_yticklabels(LID_ca.resids[::tick_interval])
ax.set_xticklabels(NMP_ca.resids[::tick_interval])

add figure labels and titles
plt.ylabel('LID')
plt.xlabel('NMP')
plt.title('Distance between alpha-carbon')

colorbar
cbar = fig.colorbar(im)
cbar.ax.set_ylabel('Distance (Angstrom)')

[5]: Text(0, 0.5, 'Distance (Angstrom)')

Calculating residue-to-residue distances

As distances.distance_array just takes coordinate arrays as input, it is very flexible in calculating distances
between each atom, or centers-of-masses, centers-of-geometries, and so on.

Instead of calculating the distance between the alpha-carbon of each residue, we could look at the distances between
the centers-of-mass instead. The process is very similar to the atom-wise distances above, but we give distances.
distance_array an array of residue center-of-mass coordinates instead.

[6]: LID = u.select_atoms('resid 122-159')
NMP = u.select_atoms('resid 30-59')

LID_com = LID.center_of_mass(compound='residues')
NMP_com = NMP.center_of_mass(compound='residues')

n_LID = len(LID_com)
n_NMP = len(NMP_com)

print('LID has {} residues and NMP has {} residues'.format(n_LID, n_NMP))

LID has 38 residues and NMP has 30 residues

48 Chapter 2. Participating

MDAnalysis User Guide

We can pass these center-of-mass arrays directly into distances.distance_array.

[7]: res_dist = distances.distance_array(LID_com, NMP_com,
box=u.dimensions)

Plotting

[8]: fig2, ax2 = plt.subplots()
im2 = ax2.imshow(res_dist, origin='upper')

add residue ID labels to axes
tick_interval = 5
ax2.set_yticks(np.arange(n_LID)[::tick_interval])
ax2.set_xticks(np.arange(n_NMP)[::tick_interval])
ax2.set_yticklabels(LID.residues.resids[::tick_interval])
ax2.set_xticklabels(NMP.residues.resids[::tick_interval])

add figure labels and titles
plt.ylabel('LID')
plt.xlabel('NMP')
plt.title('Distance between center-of-mass')

colorbar
cbar2 = fig2.colorbar(im)
cbar2.ax.set_ylabel('Distance (Angstrom)')

[8]: Text(0, 0.5, 'Distance (Angstrom)')

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

2.1. Communications 49

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164

MDAnalysis User Guide

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

All distances within a selection

Here we calculate the distance of every atom to every other atom in a selection, and show how we can extend this to
residues.

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: January 2020

Minimum version of MDAnalysis: 0.19.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:

• matplotlib

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PDB_small
from MDAnalysis.analysis import distances

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09])

[2]: u = mda.Universe(PDB_small)

Calculating atom-wise distances

We begin by selecting the alpha-carbons of the protein.

[3]: ca = u.select_atoms('name CA')
n_ca = len(ca)
n_ca

[3]: 214

50 Chapter 2. Participating

https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787
https://matplotlib.org

MDAnalysis User Guide

When given an array with 𝑛 positions, distances.self_distance_array returns the distances in a flat vector
with length 𝑛(𝑛−1)

2 . These correspond to the flattened upper triangular values of a square distance matrix.

[4]: self_distances = distances.self_distance_array(ca.positions)
self_distances.shape

[4]: (22791,)

We can convert this into a more easily interpreted square distance array. First we create an all-zero square array and
get the indices of the upper and lower triangular matrices.

[5]: sq_dist_arr = np.zeros((n_ca, n_ca))
triu = np.triu_indices_from(sq_dist_arr, k=1)

Then we simply assign the calculated distances to the upper and lower triangular positions.

[6]: sq_dist_arr[triu] = self_distances
sq_dist_arr.T[triu] = self_distances

Plotting

[7]: fig, ax = plt.subplots()
im = ax.pcolor(ca.resids, ca.resids, sq_dist_arr)

plt.pcolor gives a rectangular grid by default
so we need to make our heatmap square
ax.set_aspect('equal')

add figure labels and titles
plt.ylabel('Residue IDs')
plt.xlabel('Residue IDs')
plt.title('Distance between alpha-carbons in AdK')

colorbar
cbar = fig.colorbar(im)
cbar.ax.set_ylabel('Distance (Angstrom)')

[7]: Text(0, 0.5, 'Distance (Angstrom)')

2.1. Communications 51

MDAnalysis User Guide

Calculating distances for each residue

Instead of calculating the distance between the alpha-carbon of each residue, we could look at the distances be-
tween the centers-of-mass instead. The process is very similar to the atom-wise distances above, but we have to pass
distances.self_distance_array an array of residue center-of-mass coordinates instead.

[8]: res_com = u.atoms.center_of_mass(compound='residues')
n_res = len(res_com)
n_res

[8]: 214

As the number of residues remains the same, the resulting distances array has the same length.

[9]: res_dist = distances.self_distance_array(res_com)
res_dist.shape

[9]: (22791,)

This means we don’t need to re-define triu.

[10]: sq_dist_res = np.zeros((n_res, n_res))
sq_dist_res[triu] = res_dist
sq_dist_res.T[triu] = res_dist

Plotting

The resulting plot looks pretty similar.

[11]: fig2, ax2 = plt.subplots()
im2 = ax2.pcolor(u.residues.resids, u.residues.resids, sq_dist_res)

plt.pcolor gives a rectangular grid by default
so we need to make our heatmap square

(continues on next page)

52 Chapter 2. Participating

MDAnalysis User Guide

(continued from previous page)

ax2.set_aspect('equal')

add figure labels and titles
plt.ylabel('Residue IDs')
plt.xlabel('Residue IDs')
plt.title('Distance between centers-of-mass of AdK residues')

colorbar
cbar2 = fig2.colorbar(im2)
cbar2.ax.set_ylabel('Distance (Angstrom)')

[11]: Text(0, 0.5, 'Distance (Angstrom)')

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

MDAnalysis.analysis.contacts contains functions and a class to analyse the fraction of native contacts over
a trajectory.

2.1. Communications 53

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787
https://www.mdanalysis.org/docs/documentation_pages/analysis/contacts.html#module-MDAnalysis.analysis.contacts

MDAnalysis User Guide

Fraction of native contacts over a trajectory

Here, we calculate the native contacts of a trajectory as a fraction of the native contacts in a given reference.

Last executed: Feb 29, 2020 with MDAnalysis 0.20.1

Last updated: January 2020

Minimum version of MDAnalysis: 0.21.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:

• matplotlib

• pandas

Note

The contacts module contains 3 metrics for calculating the fraction of native contacts for a conformation:

1. hard_cut_q: atoms i and j are in contact if they are at least as close as in the given reference structure

2. soft_cut_q: atoms i and j are in contact based on a soft potential with user-defined parameters ([BHE13])

3. radius_cut_q: atoms i and j are in contact if they are within a given radius ([FKDD07])

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import contacts

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09]) The trajectory DCD samples a transition from a closed to an open conformation.

[2]: u = mda.Universe(PSF, DCD)
ref = mda.Universe(PSF, DCD)

Defining the groups for contact analysis

We define salt bridges as contacts between NH/NZ in ARG/LYS and OE*/OD* in ASP/GLU. You may not want to
use this definition for real work.

54 Chapter 2. Participating

https://matplotlib.org
https://pandas.pydata.org

MDAnalysis User Guide

[3]: sel_basic = "(resname ARG LYS) and (name NH* NZ)"
sel_acidic = "(resname ASP GLU) and (name OE* OD*)"
acidic = u.select_atoms(sel_acidic)
basic = u.select_atoms(sel_basic)

Calculating fraction of native contacts, with a distance lower than or equal to the reference structure

contacts.Contacts supports each of the three methods explained above. It must be defined with a selection
of two groups that change over time. The fraction of native contacts present in selection are with respect to
contacts found in refgroup: two contacting groups in a reference configuration. Native contacts are found in the
reference group refgroup based on the radius.

Below, we just use the atomgroups in the universe at the current frame as a reference.

[4]: ca1 = contacts.Contacts(u,
selection=(sel_acidic, sel_basic),
refgroup=(acidic, basic),
radius=4.5,
method='hard_cut').run()

The results are available as a numpy array at ca1.timeseries. The first column is the frame, and the second is
the fraction of contacts present in that frame.

[5]: ca1_df = pd.DataFrame(ca1.timeseries,
columns=['Frame',

'Contacts from first frame'])
ca1_df.head()

[5]: Frame Contacts from first frame
0 0.0 1.000000
1 1.0 0.492754
2 2.0 0.449275
3 3.0 0.507246
4 4.0 0.463768

Note that the data is presented as fractions of the native contacts present in the reference configuration. In order to find
the number of contacts present, multiply the data with the number of contacts in the reference configuration. Initial
contact matrices are saved as pairwise arrays in ca1.initial_contacts.

[6]: ca1.initial_contacts[0].shape

[6]: (70, 44)

You can sum this to work out the number of contacts in your reference, and apply that to the fractions of references in
your timeseries data.

[7]: n_ref = ca1.initial_contacts[0].sum()
print('There are {} contacts in the reference.'.format(n_ref))

There are 69 contacts in the reference.

[8]: n_contacts = ca1.timeseries[:, 1] * n_ref
print(n_contacts[:5])

[69. 34. 31. 35. 32.]

2.1. Communications 55

MDAnalysis User Guide

Plotting

[9]: ca1_df.plot(x='Frame')
plt.ylabel('Fraction of contacts')

[9]: Text(0, 0.5, 'Fraction of contacts')

Calculating fraction of native contacts, with pairs assigned based on a soft potential

refgroup can either be two contacting groups in a reference configuration, or a list of tuples of two contacting
groups. Below, we set the reference trajectory to its last frame and select another pair of contacting atomgroups.

[10]: ref.trajectory[-1]
acidic_2 = ref.select_atoms(sel_acidic)
basic_2 = ref.select_atoms(sel_basic)

This time we will use the soft_cut_q algorithm to calculate contacts by setting method='soft_cut'. This
method uses the soft potential below to determine if atoms are in contact:

𝑄(𝑟, 𝑟0) =
1

1 + 𝑒𝛽(𝑟−𝜆𝑟0)

𝑟 is a distance array and 𝑟0 are the distances in the reference group. 𝛽 controls the softness of the switching function
and 𝜆 is the tolerance of the reference distance.

Suggested values for 𝜆 is 1.8 for all-atom simulations and 1.5 for coarse-grained simulations. The default value of 𝛽
is 5.0. To change these, pass kwargs to contacts.Contacts.

[11]: ca2 = contacts.Contacts(u, selection=(sel_acidic, sel_basic),
refgroup=[(acidic, basic), (acidic_2, basic_2)],
radius=4.5,
method='soft_cut',
kwargs={'beta': 5.0,

'lambda_constant': 1.5}).run()

Again, the first column of the data array in ca2.timeseries is the frame. The next columns of the array are
fractions of native contacts with reference to the refgroups passed, in order.

56 Chapter 2. Participating

MDAnalysis User Guide

[12]: ca2_df = pd.DataFrame(ca2.timeseries,
columns=['Frame',

'Contacts from first frame',
'Contacts from last frame'])

ca2_df.head()

[12]: Frame Contacts from first frame Contacts from last frame
0 0.0 0.999094 0.719242
1 1.0 0.984928 0.767501
2 2.0 0.984544 0.788027
3 3.0 0.970184 0.829219
4 4.0 0.980425 0.833500

Plotting

Again, we can plot over time.

[13]: ca2_df.plot(x='Frame')

[13]: <matplotlib.axes._subplots.AxesSubplot at 0x1180755c0>

We can also plot the fraction of salt bridges from the first frame, over the fraction from the last frame, as a way to
characterise the transition of the protein from closed to open.

[14]: ca2_df.plot(x='Contacts from first frame', y='Contacts from last frame')
plt.ylabel('Contacts from last frame')

[14]: Text(0, 0.5, 'Contacts from last frame')

2.1. Communications 57

MDAnalysis User Guide

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] R. B. Best, G. Hummer, and W. A. Eaton. Native contacts determine protein folding mechanisms in atomistic
simulations. Proceedings of the National Academy of Sciences, 110(44):17874–17879, October 2013. 00259. URL:
http://www.pnas.org/cgi/doi/10.1073/pnas.1311599110, doi:10.1073/pnas.1311599110.

[3] Joel Franklin, Patrice Koehl, Sebastian Doniach, and Marc Delarue. MinActionPath: maximum likelihood tra-
jectory for large-scale structural transitions in a coarse-grained locally harmonic energy landscape. Nucleic Acids
Research, 35(suppl_2):W477–W482, July 2007. 00083. URL: https://academic.oup.com/nar/article-lookup/doi/10.
1093/nar/gkm342, doi:10.1093/nar/gkm342.

[4] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[5] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

Q1 vs Q2 contact analysis

Here we calculate a Q1 vs Q2 plot, where Q1 refers to fraction of native contacts along a trajectory with reference to
the first frame, and Q2 represents the fraction of native contacts with reference to the last.

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: January 2020

Minimum version of MDAnalysis: 0.17.0

58 Chapter 2. Participating

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
http://www.pnas.org/cgi/doi/10.1073/pnas.1311599110
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkm342
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkm342
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787

MDAnalysis User Guide

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for molecular and data visualisation:

• matplotlib

• pandas

Note

The contacts.q1q2 function uses the radius_cut_q method to calculate the fraction of native contacts for a
conformation by determining that atoms i and j are in contact if they are within a given radius (#best_native_2013)

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import contacts

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09]) The trajectory DCD samples a transition from a closed to an open conformation.

[2]: u = mda.Universe(PSF, DCD)

Calculating Q1 vs Q2

We choose to calculate contacts for all the alpha-carbons in the protein, and define the contact radius cutoff at 8
Angstrom. contacts.q1q2 returns a contacts.Contacts object, which we can run directly.

[3]: q1q2 = contacts.q1q2(u, 'name CA', radius=8).run()

The data is in q1q2.timeseries. The first column of the data is always the frame number.

[4]: q1q2_df = pd.DataFrame(q1q2.timeseries,
columns=['Frame',

'Q1',
'Q2'])

q1q2_df.head()

[4]: Frame Q1 Q2
0 0.0 1.000000 0.946494
1 1.0 0.980926 0.949262
2 2.0 0.973660 0.952952
3 3.0 0.972752 0.951107
4 4.0 0.970027 0.948339

2.1. Communications 59

https://matplotlib.org
https://pandas.pydata.org

MDAnalysis User Guide

Plotting

We can plot the fraction of native contacts over time.

[5]: q1q2_df.plot(x='Frame')
plt.ylabel('Fraction of native contacts')

[5]: Text(0, 0.5, 'Fraction of native contacts')

Alternatively, we can create a Q1 vs Q2 plot to characterise the transition of AdK from its opened to closed position.

[6]: q1q2_df.plot(x='Q1', y='Q2')
plt.ylabel('Q2')

[6]: Text(0, 0.5, 'Q2')

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,

60 Chapter 2. Participating

MDAnalysis User Guide

394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

Contact analysis: number of contacts within a cutoff

We calculate the number of salt bridges in an enzyme as it transitions from a closed to an open conformation.

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: January 2020

Minimum version of MDAnalysis: 0.17.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:

• matplotlib

• pandas

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import contacts

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09]) The trajectory DCD samples a transition from a closed to an open conformation.

[2]: u = mda.Universe(PSF, DCD)

Defining the groups for contact analysis

We define salt bridges as contacts between NH/NZ in ARG/LYS and OE*/OD* in ASP/GLU. You may not want to
use this definition for real work.

2.1. Communications 61

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787
https://matplotlib.org
https://pandas.pydata.org

MDAnalysis User Guide

[3]: sel_basic = "(resname ARG LYS) and (name NH* NZ)"
sel_acidic = "(resname ASP GLU) and (name OE* OD*)"
acidic = u.select_atoms(sel_acidic)
basic = u.select_atoms(sel_basic)

Calculating number of contacts within a cutoff

Below, we define a function that calculates the number of contacts between group_a and group_b within the
radius cutoff, for each frame in a trajectory.

[4]: def contacts_within_cutoff(u, group_a, group_b, radius=4.5):
timeseries = []
for ts in u.trajectory:

calculate distances between group_a and group_b
dist = contacts.distance_array(group_a.positions, group_b.positions)
determine which distances <= radius
n_contacts = contacts.contact_matrix(dist, radius).sum()
timeseries.append([ts.frame, n_contacts])

return np.array(timeseries)

The results are returned as a numpy array. The first column is the frame, and the second is the number of contacts
present in that frame.

[5]: ca = contacts_within_cutoff(u, acidic, basic, radius=4.5)
ca.shape

[5]: (98, 2)

[6]: ca_df = pd.DataFrame(ca, columns=['Frame',
'# Contacts'])

ca_df.head()

[6]: Frame # Contacts
0 0 69
1 1 73
2 2 77
3 3 77
4 4 85

Plotting

[7]: ca_df.plot(x='Frame')
plt.ylabel('# salt bridges')

[7]: Text(0, 0.5, '# salt bridges')

62 Chapter 2. Participating

MDAnalysis User Guide

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

Write your own contacts analysis method

The contacts.Contacts class has been designed to be extensible for your own analysis. Here we demonstrate
how to define a new method to use to determine the fraction of native contacts.

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: January 2020

Minimum version of MDAnalysis: 0.17.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for molecular and data visualisation:

• matplotlib

• pandas

2.1. Communications 63

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787
https://matplotlib.org
https://pandas.pydata.org

MDAnalysis User Guide

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import contacts

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09]) The trajectory DCD samples a transition from a closed to an open conformation.

[2]: u = mda.Universe(PSF, DCD)

Defining salt bridges

We define salt bridges as contacts between NH/NZ in ARG/LYS and OE*/OD* in ASP/GLU. You may not want to
use this definition for real work.

[3]: sel_basic = "(resname ARG LYS) and (name NH* NZ)"
sel_acidic = "(resname ASP GLU) and (name OE* OD*)"
acidic = u.select_atoms(sel_acidic)
basic = u.select_atoms(sel_basic)

Define your own function

Any function you define must have r and r0 as its first and second arguments respectively, even if you don’t necessarily
use them:

• r: an array of distances between atoms at the current time

• r0: an array of distances between atoms in the reference

You can then define following arguments as keyword arguments.

In the function below, we calculate the fraction of native contacts that are less than radius, but greater than
min_radius.

[4]: def fraction_contacts_between(r, r0, radius=3.4, min_radius=2.5):
is_in_contact = (r < radius) & (r > min_radius) # array of bools
fraction = is_in_contact.sum()/r.size
return fraction

Then we pass fraction_contacts_between to the contacts.Contacts class. Keyword arguments for
our custom function must be in the kwargs dictionary. Even though we define a radius keyword in my custom
analysis function, it is not automatically passed from contacts.Contacts. We have to make sure that it is in
kwargs.

[5]: ca = contacts.Contacts(u,
selection=(sel_acidic, sel_basic),

(continues on next page)

64 Chapter 2. Participating

MDAnalysis User Guide

(continued from previous page)

refgroup=(acidic, basic),
method=fraction_contacts_between,
radius=5.0,
kwargs={'radius': 5.0,

'min_radius': 2.4}).run()

[6]: ca_df = pd.DataFrame(ca.timeseries,
columns=['Frame',

'Contacts from first frame'])

Plotting

[7]: ca_df.plot(x='Frame')

[7]: <matplotlib.axes._subplots.AxesSubplot at 0x113ad2ac8>

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

2.1. Communications 65

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787

MDAnalysis User Guide

Trajectory similarity

A molecular dynamics trajectory with 𝑁 atoms can be considered through a path through 3𝑁 -dimensional molecular
configuration space. MDAnalysis contains a number of algorithms to compare the conformational ensembles of dif-
ferent trajectories. Most of these are in the MDAnalysis.analysis.encore module ([TPB+15]) and compare
estimated probability distributions to measure similarity. The path similarity analysis compares the RMSD between
pairs of structures in conformation transition paths. MDAnalysis.analysis.encore also contains functions for
evaluating the conformational convergence of a trajectory using the similarity over conformation clusters or similarity
in a reduced dimensional space.

Comparing the geometric similarity of trajectories

Here we compare the geometric similarity of trajectories using the following path metrics:

• the Hausdorff distance

• the discrete Fréchet

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: January 2020

Minimum version of MDAnalysis: 0.18.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:

• matplotlib

• seaborn

Note

The metrics and methods in the psa path similarity analysis module are from ([SKTB15]). Please cite them when
using the MDAnalysis.analysis.psa module in published work.

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import (PSF, DCD, DCD2, GRO, XTC,

PSF_NAMD_GBIS, DCD_NAMD_GBIS,
PDB_small, CRD)

from MDAnalysis.analysis import psa

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09])

66 Chapter 2. Participating

/examples/analysis/trajectory_similarity/psa.html
/examples/analysis/trajectory_similarity/clustering_ensemble_similarity.html
/examples/analysis/trajectory_similarity/dimension_reduction_ensemble_similarity.html
/examples/analysis/trajectory_similarity/dimension_reduction_ensemble_similarity.html
https://matplotlib.org
https://seaborn.pydata.org

MDAnalysis User Guide

[2]: u1 = mda.Universe(PSF, DCD)
u2 = mda.Universe(PSF, DCD2)
u3 = mda.Universe(GRO, XTC)
u4 = mda.Universe(PSF_NAMD_GBIS, DCD_NAMD_GBIS)
u5 = mda.Universe(PDB_small, CRD, PDB_small,

CRD, PDB_small, CRD, PDB_small)

ref = mda.Universe(PDB_small)

labels = ['DCD', 'DCD2', 'XTC', 'NAMD', 'mixed']

The trajectories can have different lengths, as seen below.

[3]: print(len(u1.trajectory), len(u2.trajectory), len(u3.trajectory))

98 102 10

Aligning trajectories

We set up the PSAnalysis with our list of Universes and labels. While path_select determines which atoms to cal-
culate the path similarities for, ref_select determines which atoms to use to align each Universe to reference.

[4]: CORE_sel = 'name CA and (resid 1:29 or resid 60:121 or resid 160:214)'

ps = psa.PSAnalysis([u1, u2, u3, u4, u5],
labels=labels,
reference=ref,
ref_select=CORE_sel,
path_select='name CA')

Generating paths

For each Universe, we will generate a transition path containing each conformation from a trajectory.

First, we will do a mass-weighted alignment of each trajectory to the reference structure reference, along the atoms
ref_select. To turn off the mass weighting, set weights=None. If your trajectories are already aligned, you
can skip the alignment with align=False.

[5]: ps.generate_paths(align=True, save=False, weights='mass')

Hausdorff method

Now we can compute the similarity of each path. The default metric is to use the Hausdorff method. [5] The Hausdorff
distance between two conformation transition paths 𝑃 and 𝑄 is:

𝛿𝐻(𝑃,𝑄) = max (𝛿ℎ(𝑃 |𝑄), 𝛿ℎ(𝑄|𝑃))

𝛿ℎ(𝑃 |𝑄) is the directed Hausdorff distance from 𝑃 to 𝑄, and is defined as:

𝛿ℎ(𝑃 |𝑄) = max
𝑝∈𝑃

min
𝑞∈𝑄

𝑑(𝑝, 𝑞)

2.1. Communications 67

MDAnalysis User Guide

The directed Hausdorff distance of 𝑃 to 𝑄 is the distance between the two points, 𝑝 ∈ 𝑃 and its structural nearest
neighbour 𝑞 ∈ 𝑄, for the point 𝑝 where the distance is greatest. This is not commutative, i.e. the directed Hausdorff
distance from 𝑄 to 𝑃 is not the same. (See scipy.spatial.distance.directed_hausdorff for more information).

In MDAnalysis, the Hausdorff distance is the RMSD between a pair of conformations in 𝑃 and 𝑄, where the one of
the conformations in the pair has the least similar nearest neighbour.

[6]: ps.run(metric='hausdorff')

/Users/lily/anaconda3/envs/mdanalysis/lib/python3.7/site-packages/MDAnalysis/analysis/
→˓psa.py:1556: DeprecationWarning: `save_result` is deprecated!
`save_result` will be removed in release 1.0.0.
You can save the distance matrix :attr:`D` to a numpy file with ``np.save(filename,
→˓PSAnalysis.D)``.
self.save_result(filename=filename)

The distance matrix is saved in ps.D.

[7]: ps.D

[7]: array([[0. , 1.33312648, 22.37206002, 2.04737477, 7.55204678],
[1.33312648, 0. , 22.3991666 , 2.07957562, 7.55032598],
[22.37206002, 22.3991666 , 0. , 22.42282661, 25.74534554],
[2.04737477, 2.07957562, 22.42282661, 0. , 7.67052252],
[7.55204678, 7.55032598, 25.74534554, 7.67052252, 0.]])

Plotting

psa.PSAnalysis provides two convenience methods for plotting this data. The first is to plot a heat-map dendro-
gram from clustering the trajectories based on their path similarity. You can use any clustering method supported by
scipy.cluster.hierarchy.linkage; the default is ‘ward’.

[8]: ps.plot(linkage='ward')

[8]: (array([[0. , 1. , 1.33312648, 2.],
[3. , 5. , 2.25503365, 3.],
[4. , 6. , 9.20452463, 4.],
[2. , 7. , 29.13448037, 5.]]),

{'icoord': [[35.0, 35.0, 45.0, 45.0],
[25.0, 25.0, 40.0, 40.0],
[15.0, 15.0, 32.5, 32.5],
[5.0, 5.0, 23.75, 23.75]],
'dcoord': [[0.0, 1.3331264831939273, 1.3331264831939273, 0.0],
[0.0, 2.2550336453918844, 2.2550336453918844, 1.3331264831939273],
[0.0, 9.204524628710315, 9.204524628710315, 2.2550336453918844],
[0.0, 29.134480368642226, 29.134480368642226, 9.204524628710315]],
'ivl': ['2', '4', '3', '0', '1'],
'leaves': [2, 4, 3, 0, 1],
'color_list': ['g', 'g', 'b', 'b']},

array([[0. , 25.74534554, 22.42282661, 22.37206002, 22.3991666],
[25.74534554, 0. , 7.67052252, 7.55204678, 7.55032598],
[22.42282661, 7.67052252, 0. , 2.04737477, 2.07957562],
[22.37206002, 7.55204678, 2.04737477, 0. , 1.33312648],
[22.3991666 , 7.55032598, 2.07957562, 1.33312648, 0.]]))

<Figure size 432x288 with 0 Axes>

68 Chapter 2. Participating

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.directed_hausdorff.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.cluster.hierarchy.linkage.html

MDAnalysis User Guide

The other is to plot a heatmap annotated with the distance values. Again, the trajectories are displayed in an arrange-
ment that fits the clustering method.

Note

You will need to install the data visualisation library Seaborn for this function.

[9]: ps.plot_annotated_heatmap(linkage='single')

[9]: (array([[0. , 1. , 1.33312648, 2.],
[3. , 5. , 2.04737477, 3.],
[4. , 6. , 7.55032598, 4.],
[2. , 7. , 22.37206002, 5.]]),

{'icoord': [[35.0, 35.0, 45.0, 45.0],
[25.0, 25.0, 40.0, 40.0],
[15.0, 15.0, 32.5, 32.5],
[5.0, 5.0, 23.75, 23.75]],
'dcoord': [[0.0, 1.3331264831939273, 1.3331264831939273, 0.0],
[0.0, 2.047374774767044, 2.047374774767044, 1.3331264831939273],
[0.0, 7.550325981004795, 7.550325981004795, 2.047374774767044],
[0.0, 22.372060021101248, 22.372060021101248, 7.550325981004795]],
'ivl': ['2', '4', '3', '0', '1'],
'leaves': [2, 4, 3, 0, 1],
'color_list': ['g', 'g', 'b', 'b']},

array([[0. , 25.74534554, 22.42282661, 22.37206002, 22.3991666],
[25.74534554, 0. , 7.67052252, 7.55204678, 7.55032598],
[22.42282661, 7.67052252, 0. , 2.04737477, 2.07957562],
[22.37206002, 7.55204678, 2.04737477, 0. , 1.33312648],
[22.3991666 , 7.55032598, 2.07957562, 1.33312648, 0.]]))

<Figure size 432x288 with 0 Axes>

2.1. Communications 69

https://seaborn.pydata.org/installing.html

MDAnalysis User Guide

Discrete Fréchet distances

The discrete Fréchet distance between two conformation transition paths 𝑃 and 𝑄 is:

𝛿𝑑𝐹 (𝑃,𝑄) = min
𝐶∈Γ𝑃,𝑄

‖𝐶‖

where 𝐶 is a coupling in the set of all couplings Γ𝑃,𝑄 between 𝑃 and 𝑄. A coupling 𝐶(𝑃,𝑄) is a sequence of pairs
of conformations in 𝑃 and 𝑄, where the first/last pairs are the first/last points of the respective paths, and for each
successive pair, at least one point in 𝑃 or 𝑄 must advance to the next frame.

𝐶(𝑃,𝑄) ≡ (𝑝𝑎1 , 𝑞𝑏1), (𝑝𝑎2 , 𝑞𝑏2), ..., (𝑝𝑎𝐿
, 𝑞𝑏𝐿)

The coupling distance ‖𝐶‖ is the largest distance between a pair of points in such a sequence.

‖𝐶‖ ≡ max
𝑖=1,...,𝐿

𝑑(𝑝𝑎𝑖 , 𝑞𝑏𝑖)

In MDAnalysis, the discrete Fréchet distance is the lowest possible RMSD between a conformation from 𝑃 and a
conformation from𝑄, where the two frames are at similar points along the trajectory, and they are the least structurally
similar in that particular coupling sequence. [6-9]

[10]: ps.run(metric='discrete_frechet')
ps.D

70 Chapter 2. Participating

MDAnalysis User Guide

/Users/lily/anaconda3/envs/mdanalysis/lib/python3.7/site-packages/MDAnalysis/analysis/
→˓psa.py:1556: DeprecationWarning: `save_result` is deprecated!
`save_result` will be removed in release 1.0.0.
You can save the distance matrix :attr:`D` to a numpy file with ``np.save(filename,
→˓PSAnalysis.D)``.
self.save_result(filename=filename)

[10]: array([[0. , 1.33312649, 22.37205967, 2.04737475, 7.55204694],
[1.33312649, 0. , 22.39916723, 2.07957565, 7.55032613],
[22.37205967, 22.39916723, 0. , 22.42282569, 25.74534511],
[2.04737475, 2.07957565, 22.42282569, 0. , 7.67052241],
[7.55204694, 7.55032613, 25.74534511, 7.67052241, 0.]])

Plotting

[11]: ps.plot(linkage='ward')

[11]: (array([[0. , 1. , 1.33312649, 2.],
[3. , 5. , 2.25503365, 3.],
[4. , 6. , 9.20452471, 4.],
[2. , 7. , 29.13448001, 5.]]),

{'icoord': [[35.0, 35.0, 45.0, 45.0],
[25.0, 25.0, 40.0, 40.0],
[15.0, 15.0, 32.5, 32.5],
[5.0, 5.0, 23.75, 23.75]],
'dcoord': [[0.0, 1.3331264917717554, 1.3331264917717554, 0.0],
[0.0, 2.2550336465704057, 2.2550336465704057, 1.3331264917717554],
[0.0, 9.204524708552725, 9.204524708552725, 2.2550336465704057],
[0.0, 29.134480014437507, 29.134480014437507, 9.204524708552725]],
'ivl': ['2', '4', '3', '0', '1'],
'leaves': [2, 4, 3, 0, 1],
'color_list': ['g', 'g', 'b', 'b']},

array([[0. , 25.74534511, 22.42282569, 22.37205967, 22.39916723],
[25.74534511, 0. , 7.67052241, 7.55204694, 7.55032613],
[22.42282569, 7.67052241, 0. , 2.04737475, 2.07957565],
[22.37205967, 7.55204694, 2.04737475, 0. , 1.33312649],
[22.39916723, 7.55032613, 2.07957565, 1.33312649, 0.]]))

<Figure size 432x288 with 0 Axes>

2.1. Communications 71

MDAnalysis User Guide

[12]: ps.plot_annotated_heatmap(linkage='single')

[12]: (array([[0. , 1. , 1.33312649, 2.],
[3. , 5. , 2.04737475, 3.],
[4. , 6. , 7.55032613, 4.],
[2. , 7. , 22.37205967, 5.]]),

{'icoord': [[35.0, 35.0, 45.0, 45.0],
[25.0, 25.0, 40.0, 40.0],
[15.0, 15.0, 32.5, 32.5],
[5.0, 5.0, 23.75, 23.75]],
'dcoord': [[0.0, 1.3331264917717554, 1.3331264917717554, 0.0],
[0.0, 2.047374750604888, 2.047374750604888, 1.3331264917717554],
[0.0, 7.550326126269361, 7.550326126269361, 2.047374750604888],
[0.0, 22.37205966687729, 22.37205966687729, 7.550326126269361]],
'ivl': ['2', '4', '3', '0', '1'],
'leaves': [2, 4, 3, 0, 1],
'color_list': ['g', 'g', 'b', 'b']},

array([[0. , 25.74534511, 22.42282569, 22.37205967, 22.39916723],
[25.74534511, 0. , 7.67052241, 7.55204694, 7.55032613],
[22.42282569, 7.67052241, 0. , 2.04737475, 2.07957565],
[22.37205967, 7.55204694, 2.04737475, 0. , 1.33312649],
[22.39916723, 7.55032613, 2.07957565, 1.33312649, 0.]]))

<Figure size 432x288 with 0 Axes>

72 Chapter 2. Participating

MDAnalysis User Guide

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[4] Sean L. Seyler, Avishek Kumar, M. F. Thorpe, and Oliver Beckstein. Path Similarity Analysis: A Method for
Quantifying Macromolecular Pathways. PLOS Computational Biology, 11(10):e1004568, October 2015. URL: https:
//dx.plos.org/10.1371/journal.pcbi.1004568, doi:10.1371/journal.pcbi.1004568.

2.1. Communications 73

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787
https://dx.plos.org/10.1371/journal.pcbi.1004568
https://dx.plos.org/10.1371/journal.pcbi.1004568

MDAnalysis User Guide

Calculating the Harmonic Ensemble Similarity between ensembles

Here we compare the conformational ensembles of proteins in four trajectories, using the harmonic ensemble similarity
method.

Last updated: January 2020

Minimum version of MDAnalysis: 0.21.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:

• matplotlib

Note

The metrics and methods in the encore module are from ([TPB+15]). Please cite them when using the
MDAnalysis.analysis.encore module in published work.

[2]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import (PSF, DCD, DCD2, GRO, XTC,

PSF_NAMD_GBIS, DCD_NAMD_GBIS,
PDB_small, CRD)

from MDAnalysis.analysis import encore

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

WARNING:root:sklearn.cluster could not be imported: some functionality will not be
→˓available in encore.fit_clusters()

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. (#beck-
stein_zipping_2009)

[3]: u1 = mda.Universe(PSF, DCD)
u2 = mda.Universe(PSF, DCD2)
u3 = mda.Universe(GRO, XTC)
u4 = mda.Universe(PSF_NAMD_GBIS, DCD_NAMD_GBIS)

labels = ['DCD', 'DCD2', 'XTC', 'NAMD']

The trajectories can have different lengths, as seen below.

[4]: print(len(u1.trajectory), len(u2.trajectory), len(u3.trajectory))

98 102 10

74 Chapter 2. Participating

https://matplotlib.org

MDAnalysis User Guide

Calculating harmonic similarity

The harmonic ensemble similarity method treats the conformational ensemble within each trajectory as a high-
dimensional Gaussian distribution 𝑁(𝜇,Σ). The mean 𝜇 is estimated as the average over the ensemble. The covari-
ance matrix Σ is calculated either using a shrinkage estimator (cov_estimator='shrinkage') or a maximum-
likelihood method (cov_estimator='ml').

The harmonic ensemble similarity is then calculated using the symmetrised version of the Kullback-Leibler diver-
gence. This has no upper bound, so you can get some very high values for very different ensembles.

It is recommended that you align your trajectories before computing the harmonic similarity. You can either do this
yourself with align.AlignTraj, or pass align=True into encore.hes. The latter option will align each of
your Universes to the current timestep of the first Universe. Note that since encore.hes will pull your trajectories
into memory, this changes the positions of your Universes.

[5]: hes, details = encore.hes([u1, u2, u3, u4],
selection='backbone',
align=True,
cov_estimator='shrinkage',
weights='mass')

[6]: hes

[6]: array([[0. , 24955.71870601, 1879874.4652541 ,
145622.25409916],

[24955.71870601, 0. , 1659867.54594567,
161102.33620648],

[1879874.4652541 , 1659867.54594567, 0. ,
9900092.71845526],

[145622.25409916, 161102.33620648, 9900092.71845526,
0.]])

The mean and covariance matrices for each Universe are saved in details.

Plotting

[8]: fig, ax = plt.subplots()
im = plt.imshow(hes)
plt.xticks(np.arange(4), labels)
plt.yticks(np.arange(4), labels)
plt.title('Harmonic ensemble similarity')
cbar = fig.colorbar(im)

2.1. Communications 75

MDAnalysis User Guide

References

[1] R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo, S. L. Seyler, D. L. Dotson, J. Domanski, S.
Buchoux, I. M. Kenney, and O. Beckstein. MDAnalysis: A Python package for the rapid analysis of molecular
dynamics simulations. In S. Benthall and S. Rostrup, editors, Proceedings of the 15th Python in Science Conference,
pages 98-105, Austin, TX, 2016. SciPy, doi: 10.25080/majora-629e541a-00e.

[2] N. Michaud-Agrawal, E. J. Denning, T. B. Woolf, and O. Beckstein. MDAnalysis: A Toolkit for the Analy-
sis of Molecular Dynamics Simulations. J. Comput. Chem. 32 (2011), 2319-2327, doi:10.1002/jcc.21787. PM-
CID:PMC3144279

[3] ENCORE: Software for Quantitative Ensemble Comparison. Matteo Tiberti, Elena Papaleo, Tone Bengtsen,
Wouter Boomsma, Kresten Lindorff-Larsen. PLoS Comput Biol. 2015, 11, e1004415.

[4] Beckstein O, Denning EJ, Perilla JR, Woolf TB. Zipping and unzipping of adenylate kinase: atomistic insights into
the ensemble of open<–>closed transitions. J Mol Biol. 2009;394(1):160–176. doi:10.1016/j.jmb.2009.09.009

Calculating the Clustering Ensemble Similarity between ensembles

Here we compare the conformational ensembles of proteins in three trajectories, using the clustering ensemble simi-
larity method.

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: January 2020

Minimum version of MDAnalysis: 0.20.1

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

• scikit-learn

Optional packages for visualisation:

• matplotlib

76 Chapter 2. Participating

http://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://doi.org/10.25080/majora-629e541a-00e
https://dx.doi.org/10.1002/jcc.21787
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3144279/
https://dx.doi.org/10.1016%2Fj.jmb.2009.09.009
https://scikit-learn.org/stable/
https://matplotlib.org

MDAnalysis User Guide

Note

The metrics and methods in the encore module are from ([TPB+15]). Please cite them when using the
MDAnalysis.analysis.encore module in published work.

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import (PSF, DCD, DCD2, GRO, XTC,

PSF_NAMD_GBIS, DCD_NAMD_GBIS)
from MDAnalysis.analysis import encore
from MDAnalysis.analysis.encore.clustering import ClusteringMethod as clm

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09])

[2]: u1 = mda.Universe(PSF, DCD)
u2 = mda.Universe(PSF, DCD2)
u3 = mda.Universe(PSF_NAMD_GBIS, DCD_NAMD_GBIS)

labels = ['DCD', 'DCD2', 'NAMD']

The trajectories can have different lengths, as seen below.

[3]: print(len(u1.trajectory), len(u2.trajectory), len(u3.trajectory))

98 102 100

Calculating clustering similarity with default settings

The clustering ensemble similarity method combines every trajectory into a whole space of conformations, and then
uses a user-specified clustering_method to partition this into clusters. The population of each trajectory ensem-
ble within each cluster is taken as a probability density function.

The similarity of each probability density function is compared using the Jensen-Shannon divergence. This divergence
has an upper bound of ln (2), representing no similarity between the ensembles, and a lower bound of 0.0, representing
identical conformational ensembles.

You do not need to align your trajectories, as the function will align it for you (along your selection atoms, which
are selection='name CA' by default).

[4]: ces0, details0 = encore.ces([u1, u2, u3])

encore.ces returns two outputs. ces0 is the similarity matrix for the ensemble of trajectories.

[5]: ces0

[5]: array([[0. , 0.68070702, 0.69314718],
[0.68070702, 0. , 0.69314718],
[0.69314718, 0.69314718, 0.]])

2.1. Communications 77

MDAnalysis User Guide

details0 contains the calculated clusters as a encore.clustering.ClusterCollection.
ClusterCollection.

[6]: cluster_collection = details0['clustering'][0]
print(type(cluster_collection))
print('We have found {} clusters'.format(len(cluster_collection)))

<class ’MDAnalysis.analysis.encore.clustering.ClusterCollection.ClusterCollection’>
We have found 49 clusters

We can access each Cluster at cluster_collection.clusters. For example, the first one has these elements:

[7]: first_cluster = cluster_collection.clusters[0]
first_cluster

[7]: array([0, 1, 2, 3, 98])

[8]: first_cluster.elements

[8]: array([0, 1, 2, 3, 98])

Each cluster has an ID number and a centroid conformation.

[9]: print('The ID of this cluster is:', first_cluster.id)
print('The centroid is', first_cluster.centroid)

The ID of this cluster is: 0
The centroid is 1

Plotting

[10]: fig0, ax0 = plt.subplots()
im0 = plt.imshow(ces0, vmax=np.log(2), vmin=0)
plt.xticks(np.arange(3), labels)
plt.yticks(np.arange(3), labels)
plt.title('Clustering ensemble similarity')
cbar0 = fig0.colorbar(im0)
cbar0.set_label('Jensen-Shannon divergence')

78 Chapter 2. Participating

MDAnalysis User Guide

Calculating clustering similarity with one method

Clustering methods should be subclasses of analysis.encore.clustering.ClusteringMethod, ini-
tialised with your chosen parameters. Below, we set up an affinity progragation scheme, which uses message-passing
to choose a number of ‘exemplar’ points to represent the data and updates these points until they converge. The
preference parameter controls how many exemplars are used – a higher value results in more clusters, while a
lower value results in fewer clusters. The damping factor damps the message passing to avoid numerical oscilla-
tions. (See the scikit-learn user guide for more information.)

The other keyword arguments control when to stop clustering. Adding noise to the data can also avoid numerical
oscillations.

[11]: clustering_method = clm.AffinityPropagationNative(preference=-1.0,
damping=0.9,
max_iter=200,
convergence_iter=30,
add_noise=True)

By default, MDAnalysis will run the job on one core. If it is taking too long and you have the resources, you can
increase the number of cores used.

[12]: ces1, details1 = encore.ces([u1, u2, u3],
selection='name CA',
clustering_method=clustering_method,
ncores=4)

Plotting

[13]: fig1, ax1 = plt.subplots()
im1 = plt.imshow(ces1, vmax=np.log(2), vmin=0)
plt.xticks(np.arange(3), labels)
plt.yticks(np.arange(3), labels)
plt.title('Clustering ensemble similarity')
cbar1 = fig1.colorbar(im1)
cbar1.set_label('Jensen-Shannon divergence')

2.1. Communications 79

https://scikit-learn.org/stable/modules/clustering.html#affinity-propagation

MDAnalysis User Guide

Calculating clustering similarity with multiple methods

You may want to try different clustering methods, or use different parameters within the methods. encore.ces
allows you to pass a list of clustering_methods to be applied.

Note

To use the other ENCORE methods available, you need to install scikit-learn.

Trying out different clustering parameters

The KMeans clustering algorithm separates samples into 𝑛 groups of equal variance, with centroids that minimise the
inertia. You must choose how many clusters to partition. (See the scikit-learn user guide for more information.)

[14]: km1 = clm.KMeans(12, # no. clusters
init = 'k-means++', # default
algorithm="auto") # default

km2 = clm.KMeans(6, # no. clusters
init = 'k-means++', # default
algorithm="auto") # default

The DBSCAN algorithm is a density-based clustering method that defines clusters as ‘high density’ areas, separated
by low density areas. The parameters min_samples and eps define how dense an area should be to form a cluster.
Clusters are defined around core points which have at least min_samples neighbours within a distance of eps.
Points that are at least eps in distance from any core point are considered outliers. (See the scikit-learn user guide for
more information.)

A higher min_samples or lower eps mean that data points must be more dense to form a cluster. You should
consider your eps carefully. In MDAnalysis, eps can be interpreted as the distance between two points in Angstrom.

Note

DBSCAN is an algorithm that can identify outliers, or data points that don’t fit into any cluster. dres() and
dres_convergence() treat the outliers as their own cluster. This means that the Jensen-Shannon divergence
will be lower than it should be for trajectories that have outliers. Do not use this clustering method unless you are
certain that your trajectories will not have outliers.

[15]: db1 = clm.DBSCAN(eps=0.5,
min_samples=5,
algorithm='auto',
leaf_size=30)

db2 = clm.DBSCAN(eps=1,
min_samples=5,
algorithm='auto',
leaf_size=30)

When we pass a list of clustering methods to encore.ces, the results get saved in ces2 and details2 in order.

[16]: ces2, details2 = encore.ces([u1, u2, u3],
selection='name CA',

(continues on next page)

80 Chapter 2. Participating

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/clustering.html#k-means
https://scikit-learn.org/stable/modules/clustering.html#dbscan
https://scikit-learn.org/stable/modules/clustering.html#dbscan

MDAnalysis User Guide

(continued from previous page)

clustering_method=[km1, km2, db1, db2],
ncores=4)

print(len(ces2), len(details2['clustering']))

4 4

Plotting

[17]: titles = ['Kmeans 12 clusters', 'Kmeans 6 clusters', 'DBSCAN eps=0.5', 'DBSCAN eps=1']
fig2, axes = plt.subplots(1, 4, sharey=True, figsize=(15, 3))
for i, (data, title) in enumerate(zip(ces2, titles)):

imi = axes[i].imshow(data, vmax=np.log(2), vmin=0)
axes[i].set_xticks(np.arange(3))
axes[i].set_xticklabels(labels)
axes[i].set_title(title)

plt.yticks(np.arange(3), labels)
cbar2 = fig2.colorbar(imi, ax=axes.ravel().tolist())
cbar2.set_label('Jensen-Shannon divergence')

As can be seen, reducing the number of clusters in the K-means method emphasises that DCD2 is more similar to the
NAMD trajectory than DCD. Meanwhile, increasing eps in DBSCAN clearly lowered the density required to form a
cluster so much that every trajectory is in the same cluster, and therefore they have identical probability distributions.

[18]: n_db = len(details2['clustering'][-1])

print('Number of clusters in DBSCAN eps=1: {}'.format(n_db))

Number of clusters in DBSCAN eps=1: 1

Estimating the error in a clustering ensemble similarity analysis

encore.ces also allows for error estimation using a bootstrapping method. This returns the average Jensen-Shannon
divergence, and standard deviation over the samples.

[19]: avgs, stds = encore.ces([u1, u2, u3],
selection='name CA',
clustering_method=clustering_method,
estimate_error=True,
ncores=4)

[20]: avgs

2.1. Communications 81

MDAnalysis User Guide

[20]: array([[0. , 0.68394378, 0.69314718],
[0.68394378, 0. , 0.68695471],
[0.69314718, 0.68695471, 0.]])

[21]: stds

[21]: array([[0.00000000e+00, 7.79984746e-03, 8.59975057e-17],
[7.79984746e-03, 0.00000000e+00, 7.58419318e-03],
[8.59975057e-17, 7.58419318e-03, 0.00000000e+00]])

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[4] Matteo Tiberti, Elena Papaleo, Tone Bengtsen, Wouter Boomsma, and Kresten Lindorff-Larsen. EN-
CORE: Software for Quantitative Ensemble Comparison. PLOS Computational Biology, 11(10):e1004415,
October 2015. 00031. URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004415,
doi:10.1371/journal.pcbi.1004415.

Calculating the Dimension Reduction Ensemble Similarity between ensembles

Here we compare the conformational ensembles of proteins in four trajectories, using the dimension reduction ensem-
ble similarity method.

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: January 2020

Minimum version of MDAnalysis: 0.20.1

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

• scikit-learn

Optional packages for visualisation:

• matplotlib

Note

82 Chapter 2. Participating

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004415
https://scikit-learn.org/stable/
https://matplotlib.org

MDAnalysis User Guide

The metrics and methods in the encore module are from ([TPB+15]). Please cite them when using the
MDAnalysis.analysis.encore module in published work.

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import (PSF, DCD, DCD2, GRO, XTC,

PSF_NAMD_GBIS, DCD_NAMD_GBIS)
from MDAnalysis.analysis import encore
from MDAnalysis.analysis.encore.dimensionality_reduction import
→˓DimensionalityReductionMethod as drm

import numpy as np
import matplotlib.pyplot as plt
This import registers a 3D projection, but is otherwise unused.
from mpl_toolkits.mplot3d import Axes3D
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09])

[2]: u1 = mda.Universe(PSF, DCD)
u2 = mda.Universe(PSF, DCD2)
u3 = mda.Universe(PSF_NAMD_GBIS, DCD_NAMD_GBIS)

labels = ['DCD', 'DCD2', 'NAMD']

The trajectories can have different lengths, as seen below.

[3]: print(len(u1.trajectory), len(u2.trajectory), len(u3.trajectory))

98 102 100

Calculating dimension reduction similarity with default settings

The dimension reduction similarity method projects ensembles onto a lower-dimensional space using your chosen di-
mension reduction algorithm (by default: stochastic proximity embedding). A probability density function is estimated
with Gaussian-based kernel-density estimation, using Scott’s rule to select the bandwidth.

The similarity of each probability density function is compared using the Jensen-Shannon divergence. This divergence
has an upper bound of ln (2) and a lower bound of 0.0. Normally, ln (2) represents no similarity between the ensem-
bles, and 0.0 represents identical conformational ensembles. However, due to the stochastic nature of the dimension
reduction, two identical symbols will not necessarily result in an exact divergence of 0.0. In addition, calculating the
similarity with dres() twice will result in similar but not identical numbers.

You do not need to align your trajectories, as the function will align it for you (along your selection atoms, which
are selection='name CA' by default).

[4]: dres0, details0 = encore.dres([u1, u2, u3])

encore.dres returns two outputs. dres0 is the similarity matrix for the ensemble of trajectories.

[5]: dres0

2.1. Communications 83

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.gaussian_kde.html

MDAnalysis User Guide

[5]: array([[0. , 0.57140127, 0.64493087],
[0.57140127, 0. , 0.63572664],
[0.64493087, 0.63572664, 0.]])

details0 contains information on the dimensionality reduction, as well as the associated reduced coordinates. Each
frame is in the conformational ensemble is reduced to 3 dimensions.

[6]: reduced = details0['reduced_coordinates'][0]
reduced.shape

[6]: (3, 300)

Plotting

As with the other ensemble similarity methods, we can plot a flat matrix of similarity values.

[7]: fig0, ax0 = plt.subplots()
im0 = plt.imshow(dres0, vmax=np.log(2), vmin=0)
plt.xticks(np.arange(3), labels)
plt.yticks(np.arange(3), labels)
plt.title('Dimension reduction ensemble similarity')
cbar0 = fig0.colorbar(im0)
cbar0.set_label('Jensen-Shannon divergence')

We can also plot the reduced coordinates to directly visualise where each trajectory lies in the lower-dimensional
space.

For the plotting of the reduced dimensions, we define a helper function to make it easier to partition the data.

[8]: def zip_data_with_labels(reduced):
rd_dcd = reduced[:, :98] # first 98 frames
rd_dcd2 = reduced[:, 98:(98+102)] # next 102 frames
rd_namd = reduced[:,(98+102):] # last 100 frames
return zip([rd_dcd, rd_dcd2, rd_namd], labels)

[9]: rdfig0 = plt.figure()
rdax0 = rdfig0.add_subplot(111, projection='3d')

(continues on next page)

84 Chapter 2. Participating

MDAnalysis User Guide

(continued from previous page)

for data, label in zip_data_with_labels(reduced):
rdax0.scatter(*data, label=label)

plt.legend()

[9]: <matplotlib.legend.Legend at 0x12183af60>

Calculating dimension reduction similarity with one method

Dimension reduction methods should be subclasses of analysis.encore.dimensionality_reduction.
DimensionalityReductionMethod, initialised with your chosen parameters.

Below, we set up stochastic proximity embedding scheme, which maps data to lower dimensions by iteratively adjust-
ing the distance between a pair of points on the lower-dimensional map to match their full-dimensional proximity. The
learning rate controls the magnitude of these adjustments, and decreases over the mapping from max_lam (default:
2.0) to min_lam (default: 0.1) to avoid numerical oscillation. The learning rate is updated every cycle for ncycles,
over which nstep adjustments are performed.

The number of dimensions to map to is controlled by the keyword dimension (default: 2).

[10]: dim_red_method = drm.StochasticProximityEmbeddingNative(dimension=3,
min_lam=0.2,
max_lam=1.0,
ncycle=50,
nstep=1000)

You can also control the number of samples nsamples drawn from the ensembles used to calculate the Jensen-
Shannon divergence.

By default, MDAnalysis will run the job on one core. If it is taking too long and you have the resources, you can
increase the number of cores used.

[11]: dres1, details1 = encore.dres([u1, u2, u3],
selection='name CA',
dimensionality_reduction_method=dim_red_method,
nsamples=1000,
ncores=4)

2.1. Communications 85

MDAnalysis User Guide

Plotting

Reducing the learning rate, number of cycles, and number of steps for the stochastic proximity embedding seems to
have left our trajectories closer on the lower-dimensional map.

[12]: fig1, ax1 = plt.subplots()
im1 = plt.imshow(dres1, vmax=np.log(2), vmin=0)
plt.xticks(np.arange(3), labels)
plt.yticks(np.arange(3), labels)
plt.title('Dimension reduction ensemble similarity')
cbar1 = fig1.colorbar(im1)
cbar1.set_label('Jensen-Shannon divergence')

[13]: reduced1 = details1['reduced_coordinates'][0]

rdfig1 = plt.figure()
rdax1 = rdfig1.add_subplot(111, projection='3d')
for data, label in zip_data_with_labels(reduced1):

rdax1.scatter(*data, label=label)
plt.legend()

[13]: <matplotlib.legend.Legend at 0x11d0e2630>

86 Chapter 2. Participating

MDAnalysis User Guide

Calculating dimension reduction similarity with multiple methods

You may want to try different dimension reduction methods, or use different parameters within the methods. encore.
dres allows you to pass a list of dimensionality_reduction_methods to be applied.

Note

To use the other ENCORE methods available, you need to install scikit-learn.

Trying out different dimension reduction parameters

Principal component analysis uses singular value decomposition to project data onto a lower dimensional space. (See
the scikit-learn user guide for more information.)

The method provided by MDAnalysis.encore accepts any of the keyword arguments of sklearn.decomposition.PCA
except n_components. Instead, use dimension to specify how many components to keep.

[14]: pc1 = drm.PrincipalComponentAnalysis(dimension=1,
svd_solver='auto')

pc2 = drm.PrincipalComponentAnalysis(dimension=2,
svd_solver='auto')

pc3 = drm.PrincipalComponentAnalysis(dimension=3,
svd_solver='auto')

pc4 = drm.PrincipalComponentAnalysis(dimension=4,
svd_solver='auto')

When we pass a list of clustering methods to encore.dres, the results get saved in dres2 and details2 in
order.

[15]: dres2, details2 = encore.dres([u1, u2, u3],
selection='name CA',
dimensionality_reduction_method=[pc1, pc2, pc3, pc4],
ncores=4)

print(len(dres2), len(details2['reduced_coordinates']))

4 4

Plotting

[16]: titles = ['Dim = {}'.format(n) for n in range(1, 5)]
fig2, axes = plt.subplots(1, 4, sharey=True, figsize=(15, 3))
for i, (data, title) in enumerate(zip(dres2, titles)):

imi = axes[i].imshow(data, vmax=np.log(2), vmin=0)
axes[i].set_xticks(np.arange(3))
axes[i].set_xticklabels(labels)
axes[i].set_title(title)

plt.yticks(np.arange(3), labels)
cbar2 = fig2.colorbar(imi, ax=axes.ravel().tolist())
cbar2.set_label('Jensen-Shannon divergence')

2.1. Communications 87

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/decomposition.html#pca
https://scikit-learn.org/stable/modules/decomposition.html#pca
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

MDAnalysis User Guide

In this case, adding more dimensions to the principal component analysis has little difference in how similar each
ensemble is over its resulting probability distribution (i.e. not similar at all!)

[17]: rd_p1, rd_p2, rd_p3, _ = details2['reduced_coordinates']

If we plot how the trajectories vary on one dimension with a violin plot, we can see that DCD is indeed very distant
from DCD2 and NAMD on the first principal component.

[18]: rd_p1_fig, rd_p1_ax = plt.subplots(figsize=(4, 8))
split_data = [x[0].reshape((-1,)) for x in zip_data_with_labels(rd_p1)]
rd_p1_ax.violinplot(split_data, showextrema=False)
rd_p1_ax.set_xticks(np.arange(1, 4))
rd_p1_ax.set_xticklabels(labels)

[18]: [Text(0, 0, 'DCD'), Text(0, 0, 'DCD2'), Text(0, 0, 'NAMD')]

88 Chapter 2. Participating

MDAnalysis User Guide

Expanding out to the second principal component shows that DCD2 and NAMD mainly vary on the second axis.

[19]: rd_p2_fig, rd_p2_ax = plt.subplots()
for data, label in zip_data_with_labels(rd_p2):

rd_p2_ax.scatter(*data, label=label)
plt.legend()

[19]: <matplotlib.legend.Legend at 0x120f13f60>

2.1. Communications 89

MDAnalysis User Guide

Plotting over the top three principal components gives quite a different result to the reduced coordinates given by
stochastic proximity embedding.

[20]: rd_p3_fig = plt.figure(figsize=(8, 6))
rd_p3_ax = rd_p3_fig.add_subplot(111, projection='3d')
for data, label in zip_data_with_labels(rd_p3):

rd_p3_ax.scatter(*data, label=label)
rd_p3_ax.set_xlabel('PC 1')
rd_p3_ax.set_ylabel('PC 2')
rd_p3_ax.set_zlabel('PC 3')
plt.legend()

[20]: <matplotlib.legend.Legend at 0x11cd0c128>

Estimating the error in a dimension reduction ensemble similarity analysis

encore.dres also allows for error estimation using a bootstrapping method. This returns the average Jensen-
Shannon divergence, and standard deviation over the samples.

[21]: avgs, stds = encore.dres([u1, u2, u3],
selection='name CA',
dimensionality_reduction_method=dim_red_method,
estimate_error=True,
ncores=4)

[22]: avgs

[22]: array([[0. , 0.24044451, 0.59424151],
[0.24044451, 0. , 0.58874337],
[0.59424151, 0.58874337, 0.]])

[23]: stds

90 Chapter 2. Participating

MDAnalysis User Guide

[23]: array([[0. , 0.06175088, 0.05114253],
[0.06175088, 0. , 0.05259189],
[0.05114253, 0.05259189, 0.]])

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[4] Matteo Tiberti, Elena Papaleo, Tone Bengtsen, Wouter Boomsma, and Kresten Lindorff-Larsen. EN-
CORE: Software for Quantitative Ensemble Comparison. PLOS Computational Biology, 11(10):e1004415,
October 2015. 00031. URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004415,
doi:10.1371/journal.pcbi.1004415.

Evaluating convergence

Here we evaluate the convergence of a trajectory using the clustering ensemble similarity method and the dimension-
ality reduction ensemble similarity methods.

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: January 2020

Minimum version of MDAnalysis: 0.20.1

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

• scikit-learn

Optional packages for visualisation:

• matplotlib

Note

The metrics and methods in the encore module are from ([TPB+15]). Please cite them when using the
MDAnalysis.analysis.encore module in published work.

2.1. Communications 91

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004415
https://scikit-learn.org/stable/
https://matplotlib.org

MDAnalysis User Guide

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import encore
from MDAnalysis.analysis.encore.clustering import ClusteringMethod as clm
from MDAnalysis.analysis.encore.dimensionality_reduction import
→˓DimensionalityReductionMethod as drm

import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09])

[2]: u = mda.Universe(PSF, DCD)

Evaluating convergence with similarity measures

The convergence of the trajectory is evaluated by the similarity of the conformation ensembles in windows of the
trajectory. The trajectory is divided into windows that increase by window_size frames. For example, if your
trajectory had 13 frames and you specified a window_size=3, your windows would be:

- Window 1: ---
- Window 2: ------
- Window 3: ---------
- Window 4: -------------

Where - represents 1 frame.

These are compared using either the similarity of their clusters (ces_convergence) or their reduced dimension
coordinates (dres_convergence). The rate at which the similarity values drop to 0 is indicative of how much the
trajectory keeps on resampling the same regions of the conformational space, and therefore is the rate of convergence.

Using default arguments with clustering ensemble similarity

See clustering_ensemble_similarity.ipynb for an introduction to comparing trajectories via clustering.

[3]: ces_conv = encore.ces_convergence(u, # universe
10, # window size
selection='name CA') # default

The output is an array of similarity values, with the shape (number_of_windows,
number_of_clustering_methods).

[4]: ces_conv

[4]: array([[0.48194205],
[0.40284672],
[0.31699026],
[0.25220447],

(continues on next page)

92 Chapter 2. Participating

MDAnalysis User Guide

(continued from previous page)

[0.19829817],
[0.14642725],
[0.09911411],
[0.05667391],
[0.]])

This can be easily plotted as a line.

[5]: ces_fig, ces_ax = plt.subplots()
plt.plot(ces_conv)
ces_ax.set_xlabel('Window')
ces_ax.set_ylabel('Jensen-Shannon divergence')

[5]: Text(0, 0.5, 'Jensen-Shannon divergence')

Comparing different clustering methods

You may want to try different clustering methods, or use different parameters within the methods. encore.
ces_convergence allows you to pass a list of clustering_methods to be applied, much like normal cluster-
ing ensemble similarity methods.

Note

To use the other ENCORE methods available, you need to install scikit-learn.

The KMeans clustering algorithm separates samples into 𝑛 groups of equal variance, with centroids that minimise the
inertia. You must choose how many clusters to partition. (See the scikit-learn user guide for more information.)

[6]: km1 = clm.KMeans(12, # no. clusters
init = 'k-means++', # default
algorithm="auto") # default

km2 = clm.KMeans(6, # no. clusters
init = 'k-means++', # default
algorithm="auto") # default

(continues on next page)

2.1. Communications 93

https://scikit-learn.org/stable/
https://scikit-learn.org/stable/modules/clustering.html#k-means

MDAnalysis User Guide

(continued from previous page)

km3 = clm.KMeans(3, # no. clusters
init = 'k-means++', # default
algorithm="auto") # default

When we pass a list of clustering methods to encore.ces_convergence, the similarity values get saved in
ces_conv2 in order.

[7]: ces_conv2 = encore.ces_convergence(u, # universe
10, # window size
selection='name CA',
clustering_method=[km1, km2, km3]

)
ces_conv2.shape

[7]: (9, 3)

As you can see, the number of clusters partitioned by KMeans has an effect on the resulting rate of convergence.

[8]: labels = ['12 clusters', '6 clusters', '3 clusters']

ces_fig2, ces_ax2 = plt.subplots()
for data, label in zip(ces_conv2.T, labels):

plt.plot(data, label=label)
ces_ax2.set_xlabel('Window')
ces_ax2.set_ylabel('Jensen-Shannon divergence')
plt.legend()

[8]: <matplotlib.legend.Legend at 0x11f47df28>

Using default arguments with dimension reduction ensemble similarity

See dimension_reduction_ensemble_similarity.ipynb for an introduction on comparing trajectories via dimensionality
reduction.

94 Chapter 2. Participating

MDAnalysis User Guide

[9]: dres_conv = encore.dres_convergence(u, # universe
10, # window size
selection='name CA') # default

Much like ces_convergence, the output is an array of similarity values.

[10]: dres_conv

[10]: array([[0.53383413],
[0.41463847],
[0.30425993],
[0.24385849],
[0.18008969],
[0.12072474],
[0.05691098],
[0.02318104],
[0.]])

[11]: dres_fig, dres_ax = plt.subplots()
plt.plot(dres_conv)
dres_ax.set_xlabel('Window')
dres_ax.set_ylabel('Jensen-Shannon divergence')

[11]: Text(0, 0.5, 'Jensen-Shannon divergence')

Comparing different dimensionality reduction methods

Again, you may want to compare the performance of different methods.

Principal component analysis uses singular value decomposition to project data onto a lower dimensional space. (See
the scikit-learn user guide for more information.)

The method provided by MDAnalysis.encore accepts any of the keyword arguments of sklearn.decomposition.PCA
except n_components. Instead, use dimension to specify how many components to keep.

[12]: pc1 = drm.PrincipalComponentAnalysis(dimension=1,
svd_solver='auto')

pc2 = drm.PrincipalComponentAnalysis(dimension=2,

(continues on next page)

2.1. Communications 95

https://scikit-learn.org/stable/modules/decomposition.html#pca
https://scikit-learn.org/stable/modules/decomposition.html#pca
https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.PCA.html

MDAnalysis User Guide

(continued from previous page)

svd_solver='auto')
pc3 = drm.PrincipalComponentAnalysis(dimension=3,

svd_solver='auto')

[13]: dres_conv2 = encore.dres_convergence(u, # universe
10, # window size
selection='name CA',
dimensionality_reduction_method=[pc1, pc2, pc3]

)
dres_conv2.shape

[13]: (9, 3)

Again, the size of the subspace you choose to include in your similarity comparison, affects the apparent rate of
convergence over the trajectory.

[14]: labels = ['1D', '2D', '3D']

dres_fig2, dres_ax2 = plt.subplots()
for data, label in zip(dres_conv2.T, labels):

plt.plot(data, label=label)
dres_ax2.set_xlabel('Window')
dres_ax2.set_ylabel('Jensen-Shannon divergence')
plt.legend()

[14]: <matplotlib.legend.Legend at 0x1257dcb38>

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science

96 Chapter 2. Participating

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164

MDAnalysis User Guide

Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

[4] Matteo Tiberti, Elena Papaleo, Tone Bengtsen, Wouter Boomsma, and Kresten Lindorff-Larsen. EN-
CORE: Software for Quantitative Ensemble Comparison. PLOS Computational Biology, 11(10):e1004415,
October 2015. 00031. URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004415,
doi:10.1371/journal.pcbi.1004415.

Structure

Elastic network analysis

Here we use a Gaussian network model to characterise conformational states of a trajectory.

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: January 2020

Minimum version of MDAnalysis: 0.17.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:

• matplotlib

Note

The elastic network analysis follows the approach of ([HKP+07]). Please cite them when using the MDAnalysis.
analysis.gnm module in published work.

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD, DCD2
from MDAnalysis.analysis import gnm
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09])

[2]: u1 = mda.Universe(PSF, DCD)
u2 = mda.Universe(PSF, DCD2)

2.1. Communications 97

https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004415
https://matplotlib.org

MDAnalysis User Guide

Using a Gaussian network model

Using a Gaussian network model to represent a molecule as an elastic network, we can characterise the concerted
motions of a protein, and the dominance of these motions, over a trajectory. The analysis is applied to the atoms
in the selection. If two atoms are within the cutoff distance (default: 7 ångström), they are considered to be
bound by a spring. This analysis is reasonably robust to the choice of cutoff (between 5-9 Å), but the singular value
decomposition may not converge with a lower cutoff.

[3]: nma1 = gnm.GNMAnalysis(u1,
selection='name CA',
cutoff=7.0)

nma1.run()

The output is saved in nma1.results: the time in picoseconds, the first eigenvalue, and the first eigenvector,
associated with each frame.

[4]: len(nma1.results)

[4]: 98

[5]: nma2 = gnm.GNMAnalysis(u2,
selection='name CA',
cutoff=7.0)

nma2.run()

Unlike normal mode analysis, Gaussian network model analysis uses only a single eigenvalue to represent the rotation
and translation of each frame. The motion with the lowest positive eigenvalue represents the dominant motion of a
structure. The frequency of this motion is the square root of the eigenvalue.

Plotting the probability distribution of the frequency for the first eigenvector can highlight variation in the probability
distribution, which can indicate trajectories in different states.

Below, we plot the distribution of eigenvalues. The dominant conformation state is represented by the peak at 0.06.

[6]: eigenvalues1 = [res[1] for res in nma1.results]
eigenvalues2 = [res[1] for res in nma2.results]

histfig, histax = plt.subplots(nrows=2, sharex=True, sharey=True)
histax[0].hist(eigenvalues1)
histax[1].hist(eigenvalues2)

histax[1].set_xlabel('Eigenvalue')
histax[0].set_ylabel('Frequency')
histax[1].set_ylabel('Frequency');

98 Chapter 2. Participating

MDAnalysis User Guide

When we plot how the eigenvalue varies with time, we can see that the simulation transitions into the dominant
conformation and stays there in both trajectories.

[7]: time1 = [res[0] for res in nma1.results]
time2 = [res[0] for res in nma2.results]
linefig, lineax = plt.subplots()
plt.plot(time1, eigenvalues1, label='DCD')
plt.plot(time2, eigenvalues2, label='DCD2')
lineax.set_xlabel('Time (ps)')
lineax.set_ylabel('Eigenvalue')
plt.legend();

DCD and DCD2 appear to be in similar conformation states.

Using a Gaussian network model with only close contacts

The MDAnalysis.analysis.gnm.closeContactGNMAnalysis class provides a version of the analysis
where the Kirchhoff contact matrix is generated from close contacts between individual atoms in different residues,

2.1. Communications 99

MDAnalysis User Guide

whereas the GNMAnalysis class generates it directly from all the atoms. In this close contacts class, you can weight
the contact matrix by the number of atoms in the residues.

[8]: nma_close = gnm.closeContactGNMAnalysis(u1,
selection='name CA',
cutoff=7.0,
weights='size')

nma_close.run()

[9]: eigenvalues_close = [res[1] for res in nma_close.results]

plt.hist(eigenvalues_close)
plt.xlabel('Eigenvalue')
plt.ylabel('Frequency');

[10]: time_close = [res[0] for res in nma_close.results]
ax = plt.plot(time_close, eigenvalues_close)
plt.xlabel('Time (ps)')
plt.ylabel('Eigenvalue');

100 Chapter 2. Participating

MDAnalysis User Guide

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Benjamin A. Hall, Samantha L. Kaye, Andy Pang, Rafael Perera, and Philip C. Biggin. Characterization
of Protein Conformational States by Normal-Mode Frequencies. Journal of the American Chemical Society,
129(37):11394–11401, September 2007. 00020. URL: https://doi.org/10.1021/ja071797y, doi:10.1021/ja071797y.

[4] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

Average radial distribution functions

Here we calculate the average radial cumulative distribution functions between two groups of atoms.

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: February 2020

Minimum version of MDAnalysis: 0.17.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:

• matplotlib

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import TPR, XTC
from MDAnalysis.analysis import rdf
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme. [3]

[2]: u = mda.Universe(TPR, XTC)

2.1. Communications 101

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://doi.org/10.1021/ja071797y
http://doi.wiley.com/10.1002/jcc.21787
https://matplotlib.org

MDAnalysis User Guide

Calculating the average radial distribution function for two groups of atoms

A radial distribution function 𝑔𝑎𝑏(𝑟) describes the time-averaged density of particles in 𝑏 from the reference group 𝑎
at distance 𝑟. It is normalised so that it becomes 1 for large separations in a homogenous system.

𝑔𝑎𝑏(𝑟) = (𝑁𝑎𝑁𝑏)
−1

𝑁𝑎∑︁
𝑖=1

𝑁𝑏∑︁
𝑗=1

⟨𝛿(|r𝑖 − r𝑗 | − 𝑟)⟩

The radial cumulative distribution function is

𝐺𝑎𝑏(𝑟) =

∫︁ 𝑟

0

𝑑𝑟′4𝜋𝑟′2𝑔𝑎𝑏(𝑟
′)

.

The average number of 𝑏 particles within radius 𝑟 at density 𝜌 is:

𝑁𝑎𝑏(𝑟) = 𝜌𝐺𝑎𝑏(𝑟)

The average number of particles can be used to compute coordination numbers, such as the number of neighbours in
the first solvation shell.

Below, I calculate the average RDF between each atom of residue 60 to each atom of water to look at the distribution
of water over the trajectory. The RDF is limited to a spherical shell around each atom in residue 60 by range. Note
that the range is defined around each atom, rather than the center-of-mass of the entire group.

If you are after non-averaged radial distribution functions, have a look at the site-specific RDF class.

[3]: res60 = u.select_atoms('resid 60')
water = u.select_atoms('resname SOL')

irdf = rdf.InterRDF(res60, water,
nbins=75, # default
range=(0.0, 15.0), # distance in angstroms
)

irdf.run()

[3]: <MDAnalysis.analysis.rdf.InterRDF at 0x10a343240>

The distance bins are available at irdf.bins and the radial distribution function is at irdf.rdf.

[4]: irdf.bins

[4]: array([0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1,
2.3, 2.5, 2.7, 2.9, 3.1, 3.3, 3.5, 3.7, 3.9, 4.1, 4.3,
4.5, 4.7, 4.9, 5.1, 5.3, 5.5, 5.7, 5.9, 6.1, 6.3, 6.5,
6.7, 6.9, 7.1, 7.3, 7.5, 7.7, 7.9, 8.1, 8.3, 8.5, 8.7,
8.9, 9.1, 9.3, 9.5, 9.7, 9.9, 10.1, 10.3, 10.5, 10.7, 10.9,

11.1, 11.3, 11.5, 11.7, 11.9, 12.1, 12.3, 12.5, 12.7, 12.9, 13.1,
13.3, 13.5, 13.7, 13.9, 14.1, 14.3, 14.5, 14.7, 14.9])

[5]: plt.plot(irdf.bins, irdf.rdf)
plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial distribution')

[5]: Text(0, 0.5, 'Radial distribution')

102 Chapter 2. Participating

MDAnalysis User Guide

The total number of atom pairs in each distance bin over the trajectory, before it gets normalised over the density,
number of frames, and volume of each radial shell, is at irdf.count.

[6]: irdf.count

[6]: array([0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00, 0.000e+00,
0.000e+00, 4.000e+00, 2.900e+01, 1.800e+01, 1.600e+01, 2.000e+01,
8.300e+01, 1.130e+02, 1.080e+02, 1.530e+02, 1.620e+02, 2.090e+02,
2.430e+02, 2.200e+02, 2.590e+02, 2.690e+02, 3.750e+02, 4.100e+02,
4.080e+02, 4.760e+02, 4.820e+02, 5.260e+02, 5.630e+02, 6.060e+02,
6.390e+02, 7.100e+02, 6.780e+02, 7.770e+02, 8.810e+02, 9.440e+02,
1.003e+03, 1.074e+03, 1.204e+03, 1.237e+03, 1.265e+03, 1.471e+03,
1.513e+03, 1.526e+03, 1.678e+03, 1.780e+03, 1.782e+03, 2.021e+03,
1.998e+03, 2.133e+03, 2.309e+03, 2.241e+03, 2.429e+03, 2.535e+03,
2.713e+03, 2.718e+03, 2.845e+03, 3.021e+03, 3.117e+03, 3.201e+03,
3.491e+03, 3.673e+03, 3.765e+03, 3.948e+03, 4.096e+03, 4.351e+03,
4.348e+03, 4.511e+03, 4.748e+03, 4.995e+03, 5.148e+03, 5.503e+03,
5.600e+03, 5.678e+03, 6.085e+03])

Calculating the average radial distribution function for a group of atoms to itself

You may want to calculate the average RDF for a group of atoms where atoms overlap; for instance, looking at
residue 60 around itself. In this case you should avoid including contributions from atoms interacting with themselves.
The exclusion_block keyword allows you to mask pairs within the same chunk of atoms. Here you can pass
exclusion_block=(1, 1) to create chunks of size 1 and avoid computing the RDF to itself.

[7]: irdf2 = rdf.InterRDF(res60, res60,
exclusion_block=(1, 1))

irdf2.run()

[7]: <MDAnalysis.analysis.rdf.InterRDF at 0x114049dd8>

[8]: plt.plot(irdf2.bins, irdf2.rdf)
plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial distribution')

[8]: Text(0, 0.5, 'Radial distribution')

2.1. Communications 103

MDAnalysis User Guide

Similarly, you can apply this to residues.

[9]: thr = u.select_atoms('resname THR')
print('There are {} THR residues'.format(len(thr.residues)))
print('THR has {} atoms'.format(len(thr.residues[0].atoms)))

There are 11 THR residues
THR has 14 atoms

The code below calculates the RDF only using contributions from pairs of atoms where the two atoms are not in the
same threonine residue.

[10]: irdf3 = rdf.InterRDF(thr, thr,
exclusion_block=(14, 14))

irdf3.run()

[10]: <MDAnalysis.analysis.rdf.InterRDF at 0x10a4a26d8>

[11]: plt.plot(irdf3.bins, irdf3.rdf)
plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial distribution')

[11]: Text(0, 0.5, 'Radial distribution')

104 Chapter 2. Participating

MDAnalysis User Guide

If you are splitting a residue over your two selections, you can discount pairs from the same residue by choosing
appropriately sized exclusion blocks.

[12]: first = thr.residues[0]
print('THR has these atoms: ', ', '.join(first.atoms.names))
thr_c1 = first.atoms.select_atoms('name C*')
print('THR has {} carbons'.format(len(thr_c1)))
thr_other1 = first.atoms.select_atoms('not name C*')
print('THR has {} non carbons'.format(len(thr_other1)))

THR has these atoms: N, H, CA, HA, CB, HB, OG1, HG1, CG2, HG21, HG22, HG23, C, O
THR has 4 carbons
THR has 10 non carbons

The exclusion_block here ensures that the RDF is only computed from threonine carbons to atoms in different
threonine residues.

[13]: thr_c = thr.select_atoms('name C*')
thr_other = thr.select_atoms('not name C*')

irdf4 = rdf.InterRDF(thr_c, thr_other,
exclusion_block=(4, 10))

irdf4.run()

[13]: <MDAnalysis.analysis.rdf.InterRDF at 0x1134f17b8>

[14]: plt.plot(irdf4.bins, irdf4.rdf)
plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial distribution')

[14]: Text(0, 0.5, 'Radial distribution')

2.1. Communications 105

MDAnalysis User Guide

References

[1] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[2] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

Calculating the RDF atom-to-atom

We calculate the site-specific radial distribution functions of solvent around certain atoms.

Last executed: Feb 06, 2020 with MDAnalysis 0.20.2-dev0

Last updated: February 2020

Minimum version of MDAnalysis: 0.19.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:

• matplotlib

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import TPR, XTC
from MDAnalysis.analysis import rdf
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

106 Chapter 2. Participating

https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787
https://matplotlib.org

MDAnalysis User Guide

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09])

[2]: u = mda.Universe(TPR, XTC)

Calculating the site-specific radial distribution function

A radial distribution function 𝑔𝑎𝑏(𝑟) describes the time-averaged density of particles in 𝑏 from the reference group 𝑎
at distance 𝑟. It is normalised so that it becomes 1 for large separations in a homogenous system. See the tutorial
on averaged RDFs for more information. The InterRDF_s class allows you to compute RDFs on an atom-to-atom
basis, rather than simply giving the averaged RDF as in InterRDF.

Below, I calculate the RDF between selected alpha-carbons and the water atoms within 15 angstroms of CA60, in the
first frame of the trajectory. The water group does not update over the trajectory as the water moves towards and away
from the alpha-carbon.

The RDF is limited to a spherical shell around each atom by range. Note that the range is defined around each atom,
rather than the center-of-mass of the entire group.

If density=True, the final RDF is over the average density of the selected atoms in the trajectory box, making it
comparable to the output of rdf.InterRDF. If density=False, the density is not taken into account. This can
make it difficult to compare RDFs between AtomGroups that contain different numbers of atoms.

[3]: ca60 = u.select_atoms('resid 60 and name CA')
ca61 = u.select_atoms('resid 61 and name CA')
ca62 = u.select_atoms('resid 62 and name CA')
water = u.select_atoms('resname SOL and sphzone 15 group sel_a', sel_a=ca60)

ags = [[ca60+ca61, water], [ca62, water]]

ss_rdf = rdf.InterRDF_s(u, ags,
nbins=75, # default
range=(0.0, 15.0), # distance
density=True,
)

ss_rdf.run();

Like rdf.InterRDF, the distance bins are available at ss_rdf.bins.

[4]: ss_rdf.bins

[4]: array([0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.1,
2.3, 2.5, 2.7, 2.9, 3.1, 3.3, 3.5, 3.7, 3.9, 4.1, 4.3,
4.5, 4.7, 4.9, 5.1, 5.3, 5.5, 5.7, 5.9, 6.1, 6.3, 6.5,
6.7, 6.9, 7.1, 7.3, 7.5, 7.7, 7.9, 8.1, 8.3, 8.5, 8.7,
8.9, 9.1, 9.3, 9.5, 9.7, 9.9, 10.1, 10.3, 10.5, 10.7, 10.9,

11.1, 11.3, 11.5, 11.7, 11.9, 12.1, 12.3, 12.5, 12.7, 12.9, 13.1,
13.3, 13.5, 13.7, 13.9, 14.1, 14.3, 14.5, 14.7, 14.9])

ss_rdf.rdf contains the atom-pairwise RDF for each of your pairs of AtomGroups. It is a list with the same length
as your list of pairs ags. A result array has the shape (len(ag1), len(ag2), nbins) for the AtomGroup
pair (ag1, ag2).

2.1. Communications 107

MDAnalysis User Guide

[5]: print('There are {} water atoms'.format(len(water)))
print('The first result array has shape: {}'.format(ss_rdf.rdf[0].shape))
print('The second result array has shape: {}'.format(ss_rdf.rdf[1].shape))

There are 1041 water atoms
The first result array has shape: (2, 1041, 75)
The second result array has shape: (1, 1041, 75)

Index the results array to get the RDF for a particular pair of atoms. ss_rdf.rdf[i][j][k] will return the RDF
between atoms 𝑗 and 𝑘 in the 𝑖th pair of atom groups. For example, below we get the RDF between the alpha-carbon
in residue 61 (i.e. the second atom of the first atom group) and the 571st atom of water.

[6]: ca61_h2o_571 = ss_rdf.rdf[0][1][570]
ca61_h2o_571

[6]: array([0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.41218412, 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.19906709,
0.18622866, 0. , 0.1640152 , 0. , 0. ,
0. , 0.13003857, 0. , 0. , 0. ,
0. , 0. , 0.09591515, 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0.05427213, 0. , 0. , 0. ,
0. , 0. , 0.04435226, 0.04296637, 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.])

[7]: plt.plot(ss_rdf.bins, ca61_h2o_571)
w570 = water[570]
plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial distribution')
plt.title('RDF between CA61 and {}{}'.format(w570.name, w570.resid));

If you are having trouble finding pairs of atoms where the results are not simply 0, you can use Numpy functions to
find the indices of the nonzero values. Below we count the nonzero entries in the first rdf array.

108 Chapter 2. Participating

MDAnalysis User Guide

[8]: j, k, nbin = np.nonzero(ss_rdf.rdf[0])
print(len(j), len(k), len(nbin))

4374 4374 4374

Each triplet of [j, k, nbin] indices is a nonzero value, corresponding to the nbinth bin between atoms 𝑗 and 𝑘.
For example:

[9]: ss_rdf.rdf[0][j[0], k[0], nbin[0]]

[9]: 0.04893740480237007

Right now, we don’t care which particular bin has a nonzero value. Let’s find which water atom is the most present
around the alpha-carbon of residue 60, i.e. the first atom.

[10]: # where j == 0, representing the first atom
water_for_ca60 = k[j==0]
count how many of each atom index are in array
k_values, k_counts = np.unique(water_for_ca60,

return_counts=True)
get the first k value with the most counts
k_max = k_values[np.argmax(k_counts)]
print('The water atom with the highest distribution '

'around CA60 has index {}'.format(k_max))

The water atom with the highest distribution around CA60 has index 568

You can also calculate a cumulative distribution function for each of your results with ss_rdf.get_cdf(). This
is the actual count of atoms within the given range, averaged over the trajectory; the volume of each radial shell is not
taken into account. The result then gets saved into ss_rdf.cdf. The CDF has the same shape as the corresponding
RDF array.

[11]: cdf = ss_rdf.get_cdf()
print(cdf[0].shape)

(2, 1041, 75)

[12]: plt.plot(ss_rdf.bins, ss_rdf.cdf[0][0][568])
w568 = water[568]
plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial cumulative distribution')
plt.title('RDF between CA60 and {}{}'.format(w568.name, w568.resid));

2.1. Communications 109

MDAnalysis User Guide

The site-specific RDF without densities

When the density of the selected atom groups over the box volume is not accounted for, your distribution values
will be proportionally lower.

[13]: ss_rdf_nodensity = rdf.InterRDF_s(u, ags,
nbins=75, # default
range=(0.0, 15.0), # distance
density=False,
)

ss_rdf_nodensity.run();
ss_rdf_nodensity.get_cdf();

[14]: plt.plot(ss_rdf_nodensity.bins,
ss_rdf_nodensity.rdf[0][1][570])

plt.xlabel('Radius (angstrom)')
plt.ylabel('Radial distribution')
plt.title('RDF between CA61 and {}{}'.format(w570.name, w570.resid));

110 Chapter 2. Participating

MDAnalysis User Guide

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

Protein dihedral angle analysis

We look at backbone dihedral angles and generate Ramachandran and Janin plots.

The methods and examples shown here are only applicable to Universes where protein residue names have standard
names, i.e. the backbone is comprised of –N–CA–C–N–CA– atoms.

Last executed: Feb 06, 2020 with MDAnalysis 0.20.1

Last updated: February 2020

Minimum version of MDAnalysis: 0.19.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:

2.1. Communications 111

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787

MDAnalysis User Guide

• matplotlib

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import GRO, XTC
from MDAnalysis.analysis import dihedrals
import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09])

[2]: u = mda.Universe(GRO, XTC)
protein = u.select_atoms('protein')
print('There are {} residues in the protein'.format(len(protein.residues)))

There are 214 residues in the protein

Selecting dihedral atom groups

Proteins have canonical dihedral angles defined on the backbone atoms. 𝜑 (phi), 𝜓 (psi) and 𝜔 (omega) are backbone
angles. The side-chain dihedral angles are called 𝜒𝑛 (chi-𝑛), and can vary in number.

MDAnalysis allows you to directly select the atoms involved in the 𝜑, 𝜓, 𝜔, and 𝜒1 angles, provided that your protein
atoms have standard names. If MDAnalysis cannot find atoms matching the names that it expects, it will return None.
You can see below that phi_selection() returns an ordered AtomGroup of the atoms in the 𝜑 angle of a residue
if they can be found, and None if not.

112 Chapter 2. Participating

https://matplotlib.org

MDAnalysis User Guide

[3]: for res in u.residues[210:220]:
phi = res.phi_selection()
if phi is None:

names = None
else:

names = phi.names
print('{}: {} '.format(res.resname, names))

LYS: [’C’ ’N’ ’CA’ ’C’]
ILE: [’C’ ’N’ ’CA’ ’C’]
LEU: [’C’ ’N’ ’CA’ ’C’]
GLY: [’C’ ’N’ ’CA’ ’C’]
SOL: None
SOL: None
SOL: None
SOL: None
SOL: None
SOL: None

Similar functions exist for the other angles:

• 𝜓 angle (Residue.psi_selection)

• 𝜔 angle (Residue.omega_selection)

• 𝜒1 angle (Residue.chi1_selection)

Calculating dihedral angles

Dihedral angles can be calculated directly from the AtomGroup, by converting it to a Dihedral object.

[4]: omegas = [res.omega_selection() for res in protein.residues[5:10]]
omegas[0].dihedral.value()

[4]: -169.78220560918737

The analysis.dihedrals.Dihedral class can be used to rapidly calculate dihedrals for AtomGroups over the
entire trajectory.

[5]: dihs = dihedrals.Dihedral(omegas).run();

The angles are saved in dihs.angles, in an array with the shape (n_frames, n_atomgroups).

[6]: dihs.angles.shape

[6]: (10, 5)

Plotting

[7]: labels = ['Res {}'.format(n) for n in np.arange(5, 10)]
for ang, label in zip(dihs.angles.T, labels):

plt.plot(ang, label=label)
plt.xlabel('Frame')
plt.ylabel('Angle (degrees)')
plt.legend()

2.1. Communications 113

MDAnalysis User Guide

[7]: <matplotlib.legend.Legend at 0x11392bb38>

[8]: fig_polar = plt.figure()
ax_polar = fig_polar.add_subplot(111, projection='polar')
frames = np.arange(10)
for res, label in zip(dihs.angles.T, labels):

c = ax_polar.plot(res, frames, label=label)
plt.legend();

Ramachandran analysis

The Ramachandran class calculates the 𝜑 and 𝜓 angles of the selected residues over the course of the trajectory,
again saving it into .angles. If residues are given that do not contain a 𝜑 and 𝜓 angle, they are omitted from the
results. For example, the angles returned are from every residue in the protein except the first and last, for which a 𝜑
angle and a 𝜓 angle do not exist, respectively.

The returned angles are in the shape (n_frames, n_residues, 2) where the last dimension holds the 𝜑 and 𝜓
angle.

114 Chapter 2. Participating

MDAnalysis User Guide

[9]: rama = dihedrals.Ramachandran(protein).run()
print(rama.angles.shape)

(10, 212, 2)

You can plot this yourself, but Ramachandran.plot() is a convenience method that plots the data from each time
step onto a standard Ramachandran plot. You can call it with no arguments; any keyword arguments that you give
(except ax and ref) will be passed to matplotlib.axes.Axes.scatter to modify your plot.

[10]: rama.plot(color='black', marker='.')

[10]: <matplotlib.axes._subplots.AxesSubplot at 0x1138f90b8>

If you set ref=True, your data will be plotted with areas that show the allowed (dark blue) and marginally allowed
(lighter blue) regions.

Note

These regions are computed from a reference set of 500 PDB files from ([LDA+03]). The allowed region includes
90% data points, while the marginally allowed region includes 99% data points.

[11]: rama.plot(color='black', marker='.', ref=True)

[11]: <matplotlib.axes._subplots.AxesSubplot at 0x1138c2588>

2.1. Communications 115

MDAnalysis User Guide

Janin analysis

The Janin class works similarly to the Ramachandran analysis, but looks at the 𝜒1 and 𝜒2 angles instead. It
therefore ignores all residues without a long enough side-chain, such as alanine, cysteine, and so on.

Again, the returned angles are in the shape (n_frames, n_residues, 2) where the last dimension holds the 𝜒1

and 𝜒2 angle. We can see that only about half of the residues in AdK have side-chains long enough for this analysis.

[12]: janin = dihedrals.Janin(protein).run()
print(janin.angles.shape)

(10, 129, 2)

The Janin class also contains a plot() method.

Note

The reference regions here are also computed from the reference set of 500 PDB files from ([LDA+03]) (the allowed
region includes 90% data points, while the marginally allowed region includes 98% data points). Information about
general Janin regions is from ([JWLM78]).

[13]: janin.plot(ref=True, marker='.', color='black')

[13]: <matplotlib.axes._subplots.AxesSubplot at 0x11389d518>

116 Chapter 2. Participating

MDAnalysis User Guide

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Joël Janin, Shoshanna Wodak, Michael Levitt, and Bernard Maigret. Conformation of amino acid side-chains in
proteins. Journal of Molecular Biology, 125(3):357 – 386, 1978. 00874. URL: http://www.sciencedirect.com/science/
article/pii/0022283678904084, doi:10.1016/0022-2836(78)90408-4.

[4] Simon C. Lovell, Ian W. Davis, W. Bryan Arendall, Paul I. W. de Bakker, J. Michael Word, Michael G. Prisant,
Jane S. Richardson, and David C. Richardson. Structure validation by C geometry: , and C deviation. Proteins:
Structure, Function, and Bioinformatics, 50(3):437–450, January 2003. 03997. URL: http://doi.wiley.com/10.1002/
prot.10286, doi:10.1002/prot.10286.

[5] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

Dimension reduction

A molecular dynamics trajectory with 𝑁 atoms can be considered through a path through 3𝑁 -dimensional molecular
configuration space. It remains difficult to extract important dynamics or compare trajectory similarity from such
a high-dimensional space. However, collective motions and physically relevant states can often be effectively de-
scribed with low-dimensional representations of the conformational space explored over the trajectory. MDAnalysis
implements two methods for dimensionality reduction.

Principal component analysis is a common linear dimensionality reduction technique that maps the coordinates
in each frame of your trajectory to a linear combination of orthogonal vectors. The vectors are called principal

2.1. Communications 117

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://www.sciencedirect.com/science/article/pii/0022283678904084
http://www.sciencedirect.com/science/article/pii/0022283678904084
http://doi.wiley.com/10.1002/prot.10286
http://doi.wiley.com/10.1002/prot.10286
http://doi.wiley.com/10.1002/jcc.21787

MDAnalysis User Guide

components, and they are ordered such that the first principal component accounts for the most variance in the original
data (i.e. the largest uncorrelated motion in your trajectory), and each successive component accounts for less and less
variance. Trajectory coordinates can be transformed onto a lower-dimensional space (essential subspace) constructed
from these principal components in order to compare conformations. Your trajectory can also be projected onto each
principal component in order to visualise the motion described by that component.

Diffusion maps are a non-linear dimensionality reduction technique that embeds the coordinates of each frame onto
a lower-dimensional space, such that the distance between each frame in the lower-dimensional space represents their
“diffusion distance”, or similarity. It integrates local information about the similarity of each point to its neighours,
into a global geometry of the intrinsic manifold. This means that this technique is not suitable for trajectories where the
transitions between conformational states is not well-sampled (e.g. replica exchange simulations), as the regions may
become disconnected and a meaningful global geometry cannot be approximated. Unlike PCA, there is no explicit
mapping between the components of the lower-dimensional space and the original atomic coordinates; no physical
interpretation of the eigenvectors is immediately available.

For computing similarity, see the tutorials in Trajectory similarity.

Principal component analysis of a trajectory

Here we compute the principal component analysis of a trajectory.

Last updated: February 2020

Minimum version of MDAnalysis: 0.17.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

Optional packages for visualisation:

• nglview

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD
from MDAnalysis.analysis import pca, align
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

import nglview as nv
import warnings
suppress some MDAnalysis warnings about writing PDB files
warnings.filterwarnings('ignore')
%matplotlib inline

_ColormakerRegistry()

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09]) The trajectory DCD samples a transition from a closed to an open conformation.

[2]: u = mda.Universe(PSF, DCD)

118 Chapter 2. Participating

http://nglviewer.org/nglview/latest/api.html

MDAnalysis User Guide

Principal component analysis

Principal component analysis (PCA) is a statistical technique that decomposes a system of observations into linearly
uncorrelated variables called principal components. These components are ordered so that the first principal compo-
nent accounts for the largest variance in the data, and each following component accounts for lower and lower variance.
PCA is often applied to molecular dynamics trajectories to extract the large-scale conformational motions or “essential
dynamics” of a protein. The frame-by-frame conformational fluctuation can be considered a linear combination of the
essential dynamics yielded by the PCA.

In MDAnalysis, the method is as follows:

1. Optionally align each frame in your trajectory to the first frame.

2. Construct a 3N x 3N covariance for the N atoms in your trajectory. Optionally, you can provide a mean;
otherwise the covariance is to the averaged structure over the trajectory.

3. Diagonalise the covariance matrix. The eigenvectors are the principal components, and their eigenvalues are the
associated variance.

4. Sort the eigenvalues so that the principal components are ordered by variance.

Note

Principal component analysis algorithms are deterministic, but the solutions are not unique. For example, you could
easily change the sign of an eigenvector without altering the PCA. Different algorithms are likely to produce different
answers, due to variations in implementation. MDAnalysis may not return the same values as another package.

Warning

For best results, your trajectory should be aligned on your atom group selection before you run the analysis. Setting
align=True will not give correct results in the PCA.

[3]: aligner = align.AlignTraj(u, u, select='backbone',
in_memory=True).run()

You can choose how many principal components to save from the analysis with n_components. The default value is
None, which saves all of them. You can also pass a mean reference structure to be used in calculating the covariance
matrix. With the default value of None, the covariance uses the mean coordinates of the trajectory.

[4]: pc = pca.PCA(u, select='backbone',
align=False, mean=None,
n_components=None).run()

The principal components are saved in pc.p_components. If you kept all the components, you should have an
array of shape (𝑛𝑎𝑡𝑜𝑚𝑠 × 3, 𝑛𝑎𝑡𝑜𝑚𝑠 × 3).

[5]: backbone = u.select_atoms('backbone')
n_bb = len(backbone)
print('There are {} backbone atoms in the analysis'.format(n_bb))
print(pc.p_components.shape)

There are 855 backbone atoms in the analysis
(2565, 2565)

The variance of each principal component is in pc.variance. For example, to get the variance explained by the
first principal component:

2.1. Communications 119

MDAnalysis User Guide

[6]: pc.variance[0]

[6]: 4203.190260100008

This variance is somewhat meaningless by itself. It is much more intuitive to consider the variance of a principal
component as a percentage of the total variance in the data. MDAnalysis also tracks the percentage cumulative variance
in pc.cumulated_variance. As shown below, the first principal component contains 90.3% the total trajectory
variance. The first three components combined account for 96.4% of the total variance.

[7]: print(pc.cumulated_variance[0])
print(pc.cumulated_variance[2])

0.9033944836257074
0.9642450284513093

[8]: plt.plot(pc.cumulated_variance[:10])
plt.xlabel('Principal component')
plt.ylabel('Cumulative variance');

Visualising projections into a reduced dimensional space

The pc.transform() method transforms a given atom group into weights w𝑖 over each principal component 𝑖.

w𝑖(𝑡) = (r(𝑡) − r) · u𝑖

r(𝑡) are the atom group coordinates at time 𝑡, r are the mean coordinates used in the PCA, and u𝑖 is the 𝑖th principal
component eigenvector u.

While the given atom group must have the same number of atoms that the principal components were calculated over,
it does not have to be the same group.

Again, passing n_components=None will tranform your atom group over every component. Below, we limit the
output to projections over 5 principal components only.

[9]: transformed = pc.transform(backbone, n_components=5)
transformed.shape

120 Chapter 2. Participating

MDAnalysis User Guide

[9]: (98, 5)

The output has the shape (n_frames, n_components). For easier analysis and plotting we can turn the array into a
DataFrame.

[10]: df = pd.DataFrame(transformed,
columns=['PC{}'.format(i+1) for i in range(5)])

df['Time (ps)'] = df.index * u.trajectory.dt
df.head()

[10]: PC1 PC2 PC3 PC4 PC5 Time (ps)
0 118.408403 29.088239 15.746624 -8.344273 -1.778052 0.0
1 115.561875 26.786799 14.652497 -6.621619 -0.629777 1.0
2 112.675611 25.038767 12.920275 -4.324424 -0.160540 2.0
3 110.341464 24.306985 11.427097 -3.891525 -0.173275 3.0
4 107.584299 23.464155 11.612103 -2.293161 -1.500821 4.0

There are several ways we can visualise the data. Using the Seaborn’s PairGrid tool is the quickest and easiest way,
if you have seaborn already installed.

Note

You will need to install the data visualisation library Seaborn for this function.

[11]: import seaborn as sns

g = sns.PairGrid(df, hue='Time (ps)',
palette=sns.color_palette('Oranges_d',

n_colors=len(df)))
g.map(plt.scatter, marker='.')

[11]: <seaborn.axisgrid.PairGrid at 0x12b94bac8>

2.1. Communications 121

https://seaborn.pydata.org/installing.html

MDAnalysis User Guide

Another way to investigate the essential motions of the trajectory is to project the original trajectory onto each of
the principal components, to visualise the motion of the principal component. The product of the weights w𝑖(𝑡) for
principal component 𝑖 with the eigenvector u𝑖 describes fluctuations around the mean on that axis, so the projected
trajectory r𝑖(𝑡) is simply the fluctuations added onto the mean positions r.

r𝑖(𝑡) = w𝑖(𝑡) × u𝑖 + r

Below, we generate the projected coordinates of the first principal component. The mean positions are stored at
pc.mean.

[12]: pc1 = pc.p_components[:, 0]
trans1 = transformed[:, 0]
projected = np.outer(trans1, pc1) + pc.mean
coordinates = projected.reshape(len(trans1), -1, 3)

122 Chapter 2. Participating

MDAnalysis User Guide

We can create a new universe from this to visualise the movement over the first principal component.

[13]: proj1 = mda.Merge(backbone)
proj1.load_new(coordinates, order="fac")

[13]: <Universe with 855 atoms>

[14]: view = nv.show_mdanalysis(proj1.atoms)
view

NGLWidget(max_frame=97)

If you have nglview installed, you can view the trajectory in the notebook. Otherwise, you can write the trajectory
out to a file and use another program such as VMD. Below, we create a movie of the component.

[15]: from nglview.contrib.movie import MovieMaker
movie = MovieMaker(view, output='pc1.gif', in_memory=True)
movie.make()

IntProgress(value=0, description='Rendering ...', max=97)

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

Polymers and membranes

MDAnalysis has several analyses specifically for polymers, membranes, and membrane proteins.

Determining the persistence length of a polymer

Here we determine the persistence length of a polymer.

Last executed: Feb 06, 2020 with MDAnalysis 0.20.1

Last updated: January 2020

Minimum version of MDAnalysis: 0.20.1

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

2.1. Communications 123

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787

MDAnalysis User Guide

• MDAnalysisTests

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import TRZ_psf, TRZ
from MDAnalysis.analysis import polymer
%matplotlib inline

Loading files

The test files we will be working with here feature a pure polymer melt of a polyamide.

[2]: u = mda.Universe(TRZ_psf, TRZ)

Choosing the chains and backbone atoms

We can define the chains of polyamide to be the common definition of a molecule: where each atom is bonded to at least
one other in the group, and not bonded to any atom outside the group. MDAnalysis provides these as fragments.

[3]: chains = u.atoms.fragments

We then want to select only the backbone atoms for each chain, i.e. only the carbons and nitrogens.

[4]: backbones = [ch.select_atoms('not name O* H*') for ch in chains]

This should give us AtomGroups where the spatial arrangement is linear. However, the atoms are in index order. We
can use sort_backbone to arrange our atom groups into their linear arrangement order.

[5]: sorted_bb = [polymer.sort_backbone(bb) for bb in backbones]

Calculating the persistence length

The persistence length is the length at which two points on the polymer chain become decorrelated. This is determined
by first measuring the autocorrelation 𝐶(𝑛) of two bond vectors (a𝑖,a𝑖+𝑛) separated by 𝑛 bonds, where

𝐶(𝑛) = ⟨cos 𝜃𝑖,𝑖+𝑛⟩ = ⟨ai · ai+n⟩

An exponential decay is then fitted to this, which yields the persistence length 𝑙𝑃 from the average bond length 𝑙𝐵 .

𝐶(𝑛) ≈ exp

(︂
−𝑛𝑙𝐵
𝑙𝑃

)︂
We set up our PersistenceLength class. Note that every chain we pass into it must have the same length.

[6]: plen = polymer.PersistenceLength(sorted_bb)
plen.run()

[6]: <MDAnalysis.analysis.polymer.PersistenceLength at 0x1118312e8>

The average bond length is found at plen.lb, the calculated persistence length at plen.lp, the measured autocor-
relation at plen.results and the modelled decorrelation fit at plen.fit.

[7]: print(plen.results.shape)
print('The persistence length is {}'.format(plen.lp))

124 Chapter 2. Participating

MDAnalysis User Guide

(179,)
The persistence length is 6.917464580166461

MDAnalysis.analysis.polymer.PersistenceLength provides a convenience method to plot the results.

[8]: plen.plot()

[8]: <matplotlib.axes._subplots.AxesSubplot at 0x111486ac8>

References

[1] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[2] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

Analysing pore dimensions with HOLE

Here we use HOLE to analyse pore dimensions in a membrane.

Last executed: Feb 10, 2020 with MDAnalysis 0.20.2-dev0

Last updated: January 2020

Minimum version of MDAnalysis: 0.18.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

• HOLE

2.1. Communications 125

https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787
http://www.holeprogram.org

MDAnalysis User Guide

• matplotlib

• numpy

Note

The classes in MDAnalysis.analysis.hole are wrappers around the HOLE program. Please cite ([SGW93],
[SNW+96]) when using this module in published work.

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PDB_HOLE
from MDAnalysis.analysis import hole
import matplotlib.pyplot as plt
%matplotlib inline

Using HOLE with a PDB file

MDAnalysis.analysis.hole.HOLE is a wrapper class that calls the HOLE program. This means you must
have installed the program yourself before you can use the class. You then need to pass the path to your hole
executable to the class; in this example, hole is installed at ~/hole2/exe/hole.

HOLE defines a series of points throughout the pore from which a sphere can be generated that does not overlap any
atom (as defined by its van der Waals radius). (Please see ([SGW93], [SNW+96]) for a complete explanation). By
default, it ignores residues with the following names: “SOL”, “WAT”, “TIP”, “HOH”, “K “, “NA “, “CL “. You can
change these with the ignore_residues keyword. Note that the residue names must have 3 characters. Wildcards
do not work.

The PDB file here is the experimental structure of the Gramicidin A channel. Note that we pass HOLE a PDB file
directly, without creating a MDAnalysis.Universe.

[2]: h = hole.HOLE(PDB_HOLE, executable='~/hole2/exe/hole',
logfile='hole1.out',
sphpdb='hole1.sph',
raseed=31415)

h.run()
h.collect()

This will create several outputs in your directory:

• hole1.out: the log file for HOLE.

• hole1.sph: a PDB-like file containing the coordinates of the pore centers.

• simple2.rad: file of Van der Waals’ radii

• run_n/radii_n_m.dat.gz: the profile for each frame

• tmp/pdb_name.pdb: the short name of a PDB file with your structure. As hole is a FORTRAN77 program,
it is limited in how long of a filename that it can read.

The pore profile itself is in a dictionary at h.profiles. There is only one frame in this PDB file, so it is at h.
profiles[0].

[3]: len(h.profiles[0])

[3]: 425

Each profile is a numpy.recarray with the fields below as an entry for each rxncoord:

126 Chapter 2. Participating

http://www.holeprogram.org

MDAnalysis User Guide

• frame: the integer frame number

• rxncoord: the distance along the pore axis in angstrom

• radius: the pore radius in angstrom

[4]: h.profiles[0].dtype.names

[4]: ('frame', 'rxncoord', 'radius')

You can then proceed with your own analysis of the profiles.

[5]: rxncoords = h.profiles[0].rxncoord
pore_length = rxncoords[-1] - rxncoords[0]
print('The pore is {} angstroms long'.format(pore_length))

The pore is 42.4 angstroms long

Both HOLE and HOLEtraj (below) have the min_radius() function, which will return the minimum radius in
angstrom for each frame. The resulting array has the shape (#n_frames, 2).

[6]: h.min_radius()

[6]: array([[0. , 1.19707]])

The class has a convenience plot() method to plot the coordinates of your pore.

[7]: h.plot();

You can also create a VMD surface from the hole1.sph output file, using the create_vmd_surface function.

[8]: h.create_vmd_surface(filename='hole1.vmd')

[8]: 'hole1.vmd'

To view this, open your PDB file in VMD.

vmd tmp*/*.pdb

Load the output file in Extensions > Tk Console:

source hole1.vmd

Your pore surface will be drawn as below.

2.1. Communications 127

MDAnalysis User Guide

MDAnalysis supports many of the options that can be customised in HOLE. For example, you can specify a starting
point for the pore search within the pore with cpoint, and a sample distance (default: 0.2 angstrom) for the distance
between the planes used in HOLE. Please see the MDAnalysis.analysis.hole for more information.

128 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/analysis/hole.html

MDAnalysis User Guide

Using HOLE with a trajectory

One of the limitations of the hole program is that it can only accept PDB files. In order to use other formats with
hole, or to run hole on trajectories, we can use the hole.HOLEtraj class with an MDAnalysis.Universe.
While the example file below is a PDB, you can use any files to create your Universe.

[9]: from MDAnalysis.tests.datafiles import MULTIPDB_HOLE

u = mda.Universe(MULTIPDB_HOLE)

ht = hole.HOLEtraj(u, executable='~/hole2/exe/hole',
logfile='hole2.out',
sphpdb='hole2.sph')

ht.run()

Note that you do not need call collect() after calling run() with HOLEtraj. Again, the data is stored in ht.
profiles as a dictionary of numpy.recarrays. The dictionary is indexed by frame; we can see the HOLE profile
for the fourth frame below (truncated to 19.1126 angstrom from the pore axis). In this case, the frame field of each
recarray is always 0.

[10]: ht.profiles[3][:10]

[10]: rec.array([(0, -23.6126, 15.98192), (0, -23.5126, 14.41088),
(0, -23.4126, 12.88757), (0, -23.3126, 11.90096),
(0, -23.2126, 11.27921), (0, -23.1126, 11.02236),
(0, -23.0126, 10.96035), (0, -22.9126, 10.86575),
(0, -22.8126, 10.77124), (0, -22.7126, 10.67909)],

dtype=[('frame', '<i4'), ('rxncoord', '<f8'), ('radius', '<f8')])

Again, plot() can plot the HOLE radius over each pore coordinate, differentiating each frame with colour.

[11]: ht.plot();

The plot3D() function separates each frame onto its own axis in a 3D plot.

[12]: ht.plot3D();

2.1. Communications 129

MDAnalysis User Guide

Ordering HOLE profiles with an order parameter

If you are interested in the HOLE profiles over an order parameter, you can directly pass that into the analysis. Below,
we use an order parameter of RMSD from a reference structure.

Note

Please cite ([SFSB14]) when using the orderparameter functionality.

[13]: from MDAnalysis.analysis import rms

ref = mda.Universe(PDB_HOLE)
rmsd = rms.RMSD(u, ref, select='protein', weights='mass').run()
rmsd_values = rmsd.rmsd[:, 2]
rmsd_values

[13]: array([6.10501252e+00, 4.88398472e+00, 3.66303524e+00, 2.44202454e+00,
1.22100521e+00, 1.67285541e-07, 1.22100162e+00, 2.44202456e+00,
3.66303410e+00, 4.88398478e+00, 6.10502262e+00])

You can pass this in as orderparameter. The result profiles dictionary will have your order parameters as
keys. You should be careful with this if your order parameter has repeated values, as duplicate keys are not
possible; each duplicate key just overwrites the previous value.

[14]: ht2 = hole.HOLEtraj(u, executable='~/hole2/exe/hole',
logfile='hole3.out',
sphpdb='hole3.sph',
orderparameters=rmsd_values)

ht2.run()
ht2.profiles.keys()

[14]: odict_keys([6.105012519709198, 4.883984723991125, 3.663035235691455, 2.
→˓4420245432434005, 1.2210052104208637, 1.6728554140225013e-07, 1.2210016190719406, 2.
→˓4420245634673616, 3.6630340992950225, 4.883984778674993, 6.105022620520391])

You can see here that the dictionary does not order the entries by the order parameter. If you iterate over the class, it
will return each (key, value) pair in sorted key order.

130 Chapter 2. Participating

MDAnalysis User Guide

[15]: for order_parameter, profile in ht2:
print(order_parameter, len(profile))

1.6728554140225013e-07 427
1.2210016190719406 389
1.2210052104208637 411
2.4420245432434005 421
2.4420245634673616 389
3.6630340992950225 383
3.663035235691455 423
4.883984723991125 419
4.883984778674993 369
6.105012519709198 455
6.105022620520391 401

We can use this to plot the minimum radius as a function of RMSD from the reference structure.

[16]: import numpy as np
import matplotlib.pyplot as plt

min_radius = [[rmsd_i, p.radius.min()] for rmsd_i, p in ht2]
arr = np.array(min_radius)

plt.plot(arr[:, 0], arr[:, 1])
plt.xlabel(r"order parameter RMSD ρ (\AA)")
plt.ylabel(r"minimum HOLE pore radius r (\AA)");

References

[1] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[2] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

2.1. Communications 131

https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787

MDAnalysis User Guide

[3] O S Smart, J M Goodfellow, and B A Wallace. The pore dimensions of gramicidin A. Biophysical Jour-
nal, 65(6):2455–2460, December 1993. 00522. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1225986/,
doi:10.1016/S0006-3495(93)81293-1.

[4] O. S. Smart, J. G. Neduvelil, X. Wang, B. A. Wallace, and M. S. Sansom. HOLE: a program for the analysis of
the pore dimensions of ion channel structural models. Journal of Molecular Graphics, 14(6):354–360, 376, December
1996. 00935. doi:10.1016/s0263-7855(97)00009-x.

[5] Lukas S. Stelzl, Philip W. Fowler, Mark S. P. Sansom, and Oliver Beckstein. Flexible gates generate occluded inter-
mediates in the transport cycle of LacY. Journal of Molecular Biology, 426(3):735–751, February 2014. 00000. URL:
https://asu.pure.elsevier.com/en/publications/flexible-gates-generate-occluded-intermediates-in-the-transport-c,
doi:10.1016/j.jmb.2013.10.024.

Volumetric analyses

Computing mass and charge density on each axis

Here we compute the mass and charge density of water along the three cartesian axes of a fixed-volume unit cell (i.e.
from a simulation in the NVT ensemble).

Last updated: February 2020

Minimum version of MDAnalysis: 0.17.0

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import waterPSF, waterDCD
from MDAnalysis.analysis import lineardensity as lin

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline

Loading files

The test files we are working with are a cube of water.

[2]: u = mda.Universe(waterPSF, waterDCD)

MDAnalysis.analysis.lineardensity.LinearDensity will partition each of your axes into bins of
user-specified binsize (in angstrom), and give the average mass density and average charge density of your atom
group selection.

This analysis is only suitable for a trajectory with a fixed box size. While passing a trajectory with a variable box size
will not raise an error, LinearDensity will not account for changing dimensions. It will only evaluate the density
of your atoms in the bins created from the trajectory frame when the class is first initialised.

Below, we iterate through the trajectory to verify that its box dimensions remain constant.

[3]: for ts in u.trajectory:
print(ts.dimensions)

132 Chapter 2. Participating

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1225986/
https://asu.pure.elsevier.com/en/publications/flexible-gates-generate-occluded-intermediates-in-the-transport-c

MDAnalysis User Guide

[50. 50. 50. 90. 90. 90.]
[50. 50. 50. 90. 90. 90.]
[50. 50. 50. 90. 90. 90.]
[50. 50. 50. 90. 90. 90.]
[50. 50. 50. 90. 90. 90.]
[50. 50. 50. 90. 90. 90.]
[50. 50. 50. 90. 90. 90.]
[50. 50. 50. 90. 90. 90.]
[50. 50. 50. 90. 90. 90.]
[50. 50. 50. 90. 90. 90.]

You can choose to compute the density of individual atoms, residues, segments, or fragments (groups of bonded atoms
with no bonds to any atom outside the group). By default, the grouping is for atoms.

[4]: density = lin.LinearDensity(u.atoms,
grouping='atoms').run()

The results of the analysis are in density.results.

[5]: density.nbins

[5]: 200

[6]: density.results['x']['pos']

[6]: array([0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0.00053564, 0.00080345, 0.00876966, 0.03507863, 0.00107127,
0.00348163, 0.00241036, 0.02791588, 0.04277702, 0.01753932,
0.00160691, 0.00133909, 0.00026782, 0. , 0.00107127,
0.00107127, 0.00053564, 0. , 0.03400736, 0.01968186,
0.02339714, 0.01355621, 0.00026782, 0.00107127, 0.00107127,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,

(continues on next page)

2.1. Communications 133

MDAnalysis User Guide

(continued from previous page)

0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0. ,
0. , 0. , 0. , 0. , 0.])

[7]: density.results['x'].keys()

[7]: dict_keys(['dim', 'slice volume', 'pos', 'pos_std', 'char', 'char_std'])

[8]: density.results['y']['dim']

[8]: 1

[9]: plt.plot(np.linspace(0, 50, 200), density.results['x']['pos'])

[9]: [<matplotlib.lines.Line2D at 0x112cbe198>]

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

2.1.5 Universe

If you wish to make an apple pie from scratch, you must first invent the universe.

134 Chapter 2. Participating

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html

MDAnalysis User Guide

—Carl Sagan, Cosmos

MDAnalysis is structured around two fundamental classes: the Universe and the AtomGroup. Almost all code in
MDAnalysis begins with Universe, which contains all the information describing a molecular dynamics system.

It has two key properties:

• atoms: an AtomGroup of the system’s atoms, providing access to important analysis methods (described
below)

• trajectory: the currently loaded trajectory reader

A Universe ties the static information from the “topology” (e.g. atom identities) to dynamically updating informa-
tion from the “trajectory” (e.g. coordinates). A key feature of MDAnalysis is that an entire trajectory is not loaded into
memory (unless the user explicitly does so with MemoryReader). Instead, the trajectory attribute provides a
view on a specific frame of the trajectory. This allows the analysis of arbitrarily long trajectories without a significant
impact on memory.

Creating a Universe

Loading from files

A Universe is typically created from a “topology” file, with optional “trajectory” file/s. Trajectory files must have the
coordinates in the same order as atoms in the topology. See Formats for the topology and trajectory formats supported
by MDAnalysis, and how to load each specific format.

u = Universe(topology, trajectory)
u = Universe(pdbfile) # read atoms and coordinates from PDB or
→˓GRO
u = Universe(topology, [traj1, traj2, ...]) # read from a list of trajectories
u = Universe(topology, traj1, traj2, ...) # read from multiple trajectories

The line between topology and trajectory files is quite blurry. For example, a PDB or GRO file is considered both
a topology and a trajectory file. The difference is that a topology file provides static information, such as atom
identities (name, mass, etc.), charges, and bond connectivity. A trajectory file provides dynamic information, such as
coordinates, velocities, forces, and box dimensions.

If only a single file is provided, MDAnalysis tries to read both topology and trajectory information from it. When
multiple trajectory files are provided, coordinates are loaded in the order given.

The default arguments should create a Universe suited for most analysis applications. However, the Universe
constructor also takes optional arguments.

The following options specify how to treat the input:

• format: the file format of the trajectory file/s. (default: None, formats are guessed)

• topology_format: the file format of the topology file. (default: None, formats are guessed)

• all_coordinates: whether to read coordinate information from the first file (default: False. Ignored when
only one file is provided)

• continuous: whether to give multiple trajectory files continuous time steps. This is currently only supported
for XTC/TRR trajectories with a GRO/TPR topology, following the behaviour of gmx trjcat (default: False.)

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import PDB, GRO, XTC

(continues on next page)

2.1. Communications 135

https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.trajectory
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/coordinates/memory.html#MDAnalysis.coordinates.memory.MemoryReader
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.trajectory
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
http://manual.gromacs.org/documentation/2018/onlinehelp/gmx-trjcat.html

MDAnalysis User Guide

(continued from previous page)

In [3]: u1 = mda.Universe(GRO, XTC, XTC, all_coordinates=True)

In [4]: u1.trajectory
Out[4]: <ChainReader containing adk_oplsaa.gro, adk_oplsaa.xtc, adk_oplsaa.xtc with
→˓21 frames of 47681 atoms>

In [5]: u2 = mda.Universe(GRO, XTC, XTC, all_coordinates=False, continuous=False)

In [6]: print([int(ts.time) for ts in u2.trajectory])
[0, 100, 200, 300, 400, 500, 600, 700, 800, 900, 0, 100, 200, 300, 400, 500, 600, 700,
→˓ 800, 900]

The following options modify the created Universe:

• guess_bonds: whether to guess connectivity between atoms. (default: False)

• vdwradii: a dictionary of {element: radius} of van der Waals’ radii for use in guessing bonds.

• transformations: a function or list of functions for on-the-fly trajectory transformation.

• in_memory: whether to load coordinates into memory (default: False)

• in_memory_step: only read every nth frame into an in-memory representation. (default: 1)

• is_anchor: whether to consider this Universe when unpickling AtomGroups (default: True)

• anchor_name: the name of this Universe when unpickling AtomGroups (default: None, automatically gen-
erated)

You can also pass in keywords for parsing the topology or coordinates. For example, many file formats do not specify
the timestep for their trajectory. In these cases, MDAnalysis assumes that the default timestep is 1 ps. If this is
incorrect, you can pass in a dt argument to modify the timestep. This does not modify timesteps for formats that
include time information.

In [7]: from MDAnalysis.tests.datafiles import PRM, TRJ

In [8]: default_timestep = mda.Universe(PRM, TRJ)

In [9]: default_timestep.trajectory.dt
Out[9]: 1.0

In [10]: user_timestep = mda.Universe(PRM, TRJ, dt=5) # ps

In [11]: user_timestep.trajectory.dt
Out[11]: 5

Constructing from AtomGroups

A new Universe can be created from one or more AtomGroup instances with Merge(). The AtomGroup instances
can come from different Universes, meaning that this is one way to concatenate selections from different datasets.

For example, to combine a protein, ligand, and solvent from separate PDB files:

u1 = mda.Universe("protein.pdb")
u2 = mda.Universe("ligand.pdb")
u3 = mda.Universe("solvent.pdb")
u = Merge(u1.select_atoms("protein"), u2.atoms, u3.atoms)
u.atoms.write("system.pdb")

136 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Merge
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup

MDAnalysis User Guide

Constructing from scratch

A Universe can be constructed from scratch with Universe.empty. There are three stages to this process:

1. Create the blank Universe with specified number of atoms. If coordinates, set trajectory=True.

2. Add topology attributes such as atom names.

3. (Optional) Load coordinates.

For example, to construct a universe with 6 atoms in 2 residues:

In [12]: u = mda.Universe.empty(6, 2, atom_resindex=[0, 0, 0, 1, 1, 1],
→˓trajectory=True)

In [13]: u.add_TopologyAttr('masses')

In [14]: coordinates = np.empty((1000, # number of frames
....: u.atoms.n_atoms,
....: 3))
....:

In [15]: u.load_new(coordinates, order='fac')
Out[15]: <Universe with 6 atoms>

See this notebook tutorial for more information.

Guessing topology attributes

MDAnalysis can guess two kinds of information. Sometimes MDAnalysis guesses information instead of reading
it from certain file formats, which can lead to mistakes such as assigning atoms the wrong element or charge. See
the available topology parsers for a case-by-case breakdown of which atom properties MDAnalysis guesses for each
format. See Guessing for how attributes are guessed, and Default values and attribute levels for which attributes have
default values.

Universe properties and methods

A Universe holds master groups of atoms and topology objects:

• atoms: all Atoms in the system, in an AtomGroup.

• residues: all Residues in the system

• segments: all Segments in the system

• bonds: all bond TopologyObjects in the system

• angles: all angle TopologyObjects in the system

• dihedrals: all dihedral TopologyObjects in the system

• impropers: all improper TopologyObjects in the system

Residues and Segments are chemically meaningful groups of Atoms.

Modifying a topology is typically done through the Universe, which contains several methods for adding properties:

• add_TopologyAttr()

• add_Residue()

2.1. Communications 137

https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.empty
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.add_TopologyAttr
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.add_Residue

MDAnalysis User Guide

• add_Segment()

See Topology attributes for more information on which topology attributes can be added, and exam-
ples/constructing_universe.ipynb for examples on adding attributes and Segments.

2.1.6 AtomGroup

A Universe contains all particles in the molecular system. MDAnalysis calls a particle an Atom, regardless of
whether it really is (e.g. it may be a united-atom particle or coarse-grained bead). Atoms are grouped with an
AtomGroup; the ‘master’ AtomGroup of a Universe is accessible at Universe.atoms.

Note: The AtomGroup is probably the most important object in MDAnalysis. Virtually everything can be accessed
through an AtomGroup.

Creating an AtomGroup

Atom selection language

AtomGroup instances are typically created with Universe.select_atoms or by manipulating another
AtomGroup, e.g. by slicing.

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import PDB

In [3]: u = mda.Universe(PDB)

In [4]: u.select_atoms('resname ARG')
Out[4]: <AtomGroup with 312 atoms>

See Atom selection language for more information.

Indexing and slicing

An AtomGroup can be indexed and sliced like a list:

In [5]: print(u.atoms[0])
<Atom 1: N of type N of resname MET, resid 1 and segid SYSTEM and altLoc >

Slicing returns another AtomGroup. The below code returns an AtomGroup of every second element from the first
to the 6th element, corresponding to indices 0, 2, and 4.

In [6]: ag = u.atoms[0:6:2]

In [7]: ag.indices
Out[7]: array([0, 2, 4])

MDAnalysis also supports fancy indexing: passing a ndarray or a list.

138 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.add_Segment
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Atom
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Atom
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.select_atoms
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list

MDAnalysis User Guide

In [8]: indices = [0, 3, -1, 10, 3]

In [9]: u.atoms[indices].indices
Out[9]: array([0, 3, 47680, 10, 3])

Boolean indexing allows you to pass in an array of True or False values to create a new AtomGroup from another.
The array must be the same length as the original AtomGroup. This allows you to select atoms on conditions.

In [10]: arr = u.atoms.resnames == 'ARG'

In [11]: len(arr) == len(u.atoms)

In [12]: arr
Out[12]: Out[11]: array([False, False, False, ..., False, False, False])

In [13]: u.atoms[arr]

Group operators and set methods

MDAnalysis supports a number of ways to compare AtomGroups or construct a new one: group operators (e.g.
concatenate(), subtract()) and set methods (e.g. union(), difference()). Group operators achieve a
similar outcome to set methods. However, a key difference is that concatenate() and subtract() preserve the
order of the atoms and any duplicates. union() and difference() return an AtomGroup where each atom is
unique, and ordered by its topology index.

In [14]: ag1 = u.atoms[1:6]

In [15]: ag2 = u.atoms[8:3:-1]

In [16]: concat = ag1 + ag2

In [17]: concat.indices
Out[17]: array([1, 2, 3, 4, 5, 8, 7, 6, 5, 4])

In [18]: union = ag1 | ag2

In [19]: union.indices
Out[19]: array([1, 2, 3, 4, 5, 6, 7, 8])

Available operators

Unlike set methods and atom selection language, concatenation and subtraction keep the order of the atoms as well as
duplicates.

Operation Equivalent Result
len(s) number of atoms in the group
s == t test if s and t contain the same elements in the same order
s.concatenate(t) s + t new Group with elements from s and from t
s.subtract(t) new Group with elements from s that are not in t

Available set methods

Each of these methods create groups that are sorted sets of unique Atoms.

2.1. Communications 139

https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.concatenate
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.subtract
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.union
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.difference
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.concatenate
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.subtract
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.union
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.difference
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Atom

MDAnalysis User Guide

Operation Equiva-
lent

Result

s.isdisjoint(t) True if s and t do not share elements
s.issubset(t) test if all elements of s are part of t
s.is_strict_subset(t) test if all elements of s are part of t, and s != t
s.issuperset(t) test if all elements of t are part of s
s.is_strict_superset(t) test if all elements of t are part of s, and s != t
s.union(t) s | t new Group with elements from both s and t
s.intersection(t) s & t new Group with elements common to s and t
s.difference(t) s - t new Group with elements of s that are not in t
s.symmetric_difference(t) s ^ t new Group with elements that are part of s or t but not both

Groupby and split

An AtomGroup can be constructed from another by separating atoms by properties.

AtomGroup.split can create a list of AtomGroups by splitting another AtomGroup by the ‘level’ of connec-
tivity: one of atom, residue, molecule, or segment.

In [20]: ag1 = u.atoms[:100]

In [21]: ag1.split('residue')
Out[21]:
[<AtomGroup with 19 atoms>,
<AtomGroup with 24 atoms>,
<AtomGroup with 19 atoms>,
<AtomGroup with 19 atoms>,
<AtomGroup with 19 atoms>]

An AtomGroup can also be separated according to values of topology attributes to produce a dictionary of
{value:AtomGroup}.

In [22]: u.atoms.groupby('masses')
Out[22]:
{32.06: <AtomGroup with 7 atoms>,
1.008: <AtomGroup with 23853 atoms>,
0.0: <AtomGroup with 11084 atoms>,
12.011: <AtomGroup with 1040 atoms>,
14.007: <AtomGroup with 289 atoms>,
15.999: <AtomGroup with 11404 atoms>,
22.98977: <AtomGroup with 4 atoms>}

Passing in multiple attributes groups them in order:

In [23]: u.select_atoms('resname SOL NA+').groupby(['masses', 'resnames'])
Out[23]:
{(0.0, 'SOL'): <AtomGroup with 11084 atoms>,
(1.008, 'SOL'): <AtomGroup with 22168 atoms>,
(22.98977, 'NA+'): <AtomGroup with 4 atoms>,
(15.999, 'SOL'): <AtomGroup with 11084 atoms>}

140 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.split
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup

MDAnalysis User Guide

Constructing from Atoms

An AtomGroup can be created from an iterable of Atom instances:

In [24]: atom1 = u.atoms[4]

In [25]: atom2 = u.atoms[6]

In [26]: atom3 = u.atoms[2]

In [27]: ag = mda.AtomGroup([atom1, atom2, atom3])

In [28]: print(ag)
<AtomGroup [<Atom 5: CA of type C of resname MET, resid 1 and segid SYSTEM and altLoc
→˓>, <Atom 7: CB of type C of resname MET, resid 1 and segid SYSTEM and altLoc >,
→˓<Atom 3: H2 of type H of resname MET, resid 1 and segid SYSTEM and altLoc >]>

A neat shortcut for this is to simply add an Atom to another Atom or AtomGroup:

In [29]: ag = atom1 + atom2

In [30]: print(ag)
<AtomGroup [<Atom 5: CA of type C of resname MET, resid 1 and segid SYSTEM and altLoc
→˓>, <Atom 7: CB of type C of resname MET, resid 1 and segid SYSTEM and altLoc >]>

In [31]: ag += atom3

In [32]: print(ag)
<AtomGroup [<Atom 5: CA of type C of resname MET, resid 1 and segid SYSTEM and altLoc
→˓>, <Atom 7: CB of type C of resname MET, resid 1 and segid SYSTEM and altLoc >,
→˓<Atom 3: H2 of type H of resname MET, resid 1 and segid SYSTEM and altLoc >]>

An alternative method is to provide a list of indices and the Universe that the Atoms belong to:

In [33]: ag = mda.AtomGroup([4, 6, 2], u)

In [34]: print(ag)
<AtomGroup [<Atom 5: CA of type C of resname MET, resid 1 and segid SYSTEM and altLoc
→˓>, <Atom 7: CB of type C of resname MET, resid 1 and segid SYSTEM and altLoc >,
→˓<Atom 3: H2 of type H of resname MET, resid 1 and segid SYSTEM and altLoc >]>

Order and uniqueness

These methods of creating an AtomGroup result in a sorted, unique list of atoms:

• Atom selection language

• Slicing

• Boolean indexing

• Set methods

• AtomGroup.split and AtomGroup.groupby

These methods return a user-ordered AtomGroup that can contain duplicates:

• Fancy indexing (with arrays or lists)

2.1. Communications 141

https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Atom
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Atom
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Atom
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Atom
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.split
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.groupby
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup

MDAnalysis User Guide

• Group operations (AtomGroup.concatenate and AtomGroup.subtract)

• Constructing directly from Atoms

Empty AtomGroups

MDAnalysis can also work with empty AtomGroups:

In [35]: null = u.atoms[[]]

In [36]: null
Out[36]: <AtomGroup with 0 atoms>

The above is the same as creating an AtomGroup from an empty list and a Universe.

In [37]: mda.AtomGroup([], u)
Out[37]: <AtomGroup with 0 atoms>

Each method of creating an AtomGroup can also be used to create an empty one. For example, using selection
language:

In [38]: u.select_atoms("resname DOES_NOT_EXIST")
Out[38]: <AtomGroup with 0 atoms>

and indexing:

In [39]: u.atoms[6:6]
Out[39]: <AtomGroup with 0 atoms>

or set methods:

In [40]: u.atoms - u.atoms
Out[40]: <AtomGroup with 0 atoms>

Empty AtomGroups have a length of 0 and evaluate to False in a boolean context.

In [41]: bool(null)
Out[41]: False

This allows analysis methods to skip over empty AtomGroups instead of raising an error, which is helpful as occa-
sionally empty AtomGroups can arise from selection logic that is too restrictive (e.g. geometric selections).

Dynamically updating AtomGroups

A normal AtomGroup is static, and the atoms within it do not change as the trajectory frame changes. Several methods
require dynamically updating AtomGroups. These are typically created using atom selection language. See Dynamic
selections for more information.

Methods

Most of the analysis functionality in MDAnalysis is implemented in the analysis module, but many interesting methods
can be accessed from an AtomGroup directly. For example, Bonds, Angles, Dihedrals and ImproperDihedrals can
be created from AtomGroups. Providing that required topology attributes are present, a number of analysis methods
are also available to a AtomGroup, ResidueGroup, and SegmentGroup.

142 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.concatenate
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.subtract
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Atom
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.ResidueGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.SegmentGroup

MDAnalysis User Guide

2.1.7 Groups of atoms

MDAnalysis has a hierarchy of Atom containers that are used throughout the code.

First and foremost is the AtomGroup. An AtomGroup is the primary Atom container; virtually everything can
be accessed through it, as detailed in AtomGroup. This includes chemically meaningful groups of Atoms such as a
Residue or a Segment.

Residues and Segments

A Residue is composed of Atoms, and a Segment is composed of Residues.

The corresponding container groups are ResidueGroup and SegmentGroup. These have similar properties and
available methods as AtomGroup.

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import TPR, XTC

In [3]: u = mda.Universe(TPR, XTC)

In [4]: ag = u.atoms.select_atoms('resname ARG and name CA')

In [5]: ag
Out[5]: <AtomGroup with 13 atoms>

Each of these container groups can be accessed through another. The behaviour of this differs by level. For example,
the residues of the ag are the residues that the atoms of ag belong to.

In [6]: ag.residues
Out[6]: <ResidueGroup with 13 residues>

Accessing the atoms of those residues, however, returns all the atoms in the residues, not just those originally in ag.

In [7]: ag.residues.atoms
Out[7]: <AtomGroup with 312 atoms>

The same applies to segments.

In [8]: ag[:3].segments.atoms
Out[8]: <AtomGroup with 3341 atoms>

Similarly, an Atom has direct knowledge of the Residue and Segment it belongs to. Note that an Atom belongs
to one Residue and the residue belongs to one Segment, but a Segment has multiple residues.

In [9]: a = u.atoms[0]

In [10]: a.residue

(continues on next page)

2.1. Communications 143

https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Atom
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Atom
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Atom
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Residue
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Segment
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Residue
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Atom
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Segment
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Residue
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.ResidueGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.SegmentGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Atom
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Residue
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Segment
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Atom
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Residue
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Segment
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Segment

MDAnalysis User Guide

(continued from previous page)

Out[10]: <Residue LYSH, 0>

In [11]: a.residue.segment
Out[11]: <Segment seg_0_Protein_A>

In [12]: a.residue.segment.residues
Out[12]: <ResidueGroup with 129 residues>

For information on adding custom Residues or Segments, have a look at Adding a Residue or Segment to a Universe.

Fragments

Certain analysis methods in MDAnalysis also make use of additional ways to group atoms. A key concept is a
fragment. A fragment is what is typically considered a molecule: an AtomGroup where any atom is reachable from
any other atom in the AtomGroup by traversing bonds, and none of its atoms is bonded to any atoms outside the
AtomGroup. (A ‘molecule’ in MDAnalysis methods refers to a GROMACS-specific concept). The fragments of a
Universe are determined by MDAnalysis as a derived quantity. They can only be determined if bond information is
available.

The fragments of an AtomGroup are accessible via the fragments property. Below is a Universe from a GRO-
MACS TPR file of lysozyme (PDB ID: 2LYZ) with 101 water molecules. While it has 230 residues, there are only
102 fragments: 1 protein and 101 water fragments.

In [12]: len(u.residues)
Out[12]: 230

In [13]: len(u.atoms.fragments)
Out[13]: 102

See Topology objects for more on bonds and which file formats give MDAnalysis bond information.

You can also look at which fragment a particular Atom belongs to:

In [9]: u.atoms[0].fragment # first atom of lysozyme
Out[9]: <AtomGroup with 3341 atoms>

and see which fragments are associated with atoms in a smaller AtomGroup:

In [10]: u.atoms[1959:1961].fragments
Out[10]: (<AtomGroup with 3341 atoms>,)

Note: AtomGroup.fragments returns a tuple of fragments with at least one Atom in the AtomGroup, not a
tuple of fragments where all Atoms are in the AtomGroup.

2.1.8 Atom selection language

AtomGroups can be created by selecting atoms using the MDAnalysis atom selection language:

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import PSF, DCD

(continues on next page)

144 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
http://www.rcsb.org/structure/2LYZ
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Atom
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Atom
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup

MDAnalysis User Guide

(continued from previous page)

In [3]: u = mda.Universe(PSF, DCD)

In [4]: ala = u.select_atoms('resname ALA')

In [5]: ala
Out[5]: <AtomGroup with 190 atoms>

The select_atoms() method of a AtomGroup or a Universe returns an AtomGroup. These two meth-
ods have different behaviour: while Universe.select_atoms operates on all the atoms in the universe,
AtomGroup.select_atoms only operates on the atoms within the original AtomGroup. A single selection phrase
always returns an AtomGroup with atoms sorted according to their index in the topology. This is to ensure that there
are not any duplicates, which can happen with complicated selections. When order matters, you can pass in multiple
phrases.

This page documents selection keywords and their arguments. select_atoms() also accepts keywords that modify
the behaviour of the selection string and the resulting AtomGroup (documented further down this page). For example,
you can:

• Pass in named AtomGroups as arguments:

In [6]: sph_6 = u.select_atoms("sphzone 6 protein")

In [7]: u.select_atoms("around 3 group sph_6", sph_6=sph_6)
Out[7]: <AtomGroup with 81 atoms>

• Turn off periodic boundary conditions for geometric keywords with periodic=False:

In [8]: u.select_atoms("around 6 protein", periodic=False)
Out[8]: <AtomGroup with 0 atoms>

• Create dynamic UpdatingAtomGroups with updating=True:

In [9]: u.select_atoms("prop x < 5 and prop y < 5 and prop z < 5", updating=True)
Out[9]: <AtomGroup with 917 atoms, with selection 'prop x < 5 and prop y < 5 and prop
→˓z < 5' on the entire Universe.>

It is possible to export selections for external software packages with the help of Selection exporters.

Selection Keywords

The following describes all selection keywords currently understood by the selection parser. The following applies to
all selections:

• Keywords are case sensitive.

• Atoms are automatically sequentially ordered in a resulting selection (see notes below on Ordered selections for
how to circumvent this if necessary).

• Selections are parsed left to right and parentheses can be used for grouping. For example:

In [10]: u.select_atoms("segid DMPC and not (name H* or type OW)")
Out[10]: <AtomGroup with 0 atoms>

• Currently, wildcards are implemented as a form of pattern matching: Using the * character in a string such as
GL* selects all strings that start with “GL” such as “GLU”, “GLY”, “GLX29”, “GLN”. Only terminal wildcards
(i.e. matching the last part of a name) are currently supported.

2.1. Communications 145

https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.select_atoms
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.select_atoms
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.select_atoms
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.select_atoms
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup

MDAnalysis User Guide

Note: Up until version 1.0.0, MDAnalysis will ignore everything after the *. u.select_atoms("resname

*E") will not select atoms whose residue name ends in E, but instead select every atom.

Simple selections

protein Selects atoms that belong to a hard-coded set of standard protein residue names.

backbone Selects the backbone atoms of a hard-coded set of protein residues. These atoms have the names: CA, C,
O, N.

nucleic Selects atoms that belong to a hard-coded set of standard nucleic residue names.

nucleicbackbone Selects the backbone atoms of a hard-coded set of nucleic residues. These atoms have the names:
P, O5’, C5’, C3’, O3’

nucleicbase Selects the atoms in nucleobases.

nucleicsugar Selects the atoms in nucleic sugars. These have the names: C1’, C2’, C3’, C4’, O2’, O4’, O3’

segid seg-name select by segid (as given in the topology), e.g. segid 4AKE or segid DMPC

resid residue-number-range resid can take a single residue number or a range of numbers, followed by insertion
codes. A range consists of two selections separated by a colon (inclusive) such as resid 1A:1C. This selects
all residues with resid==1 and icode in ('A', 'B', 'C'). A residue number (“resid”) and icode is
taken directly from the topology. Unlike resnum, resid is sensitive to insertion codes.

resnum residue-number-range resnum can take a single residue number or a range of numbers. A range consists
of two numbers separated by a colon (inclusive) such as resnum 1:5. A residue number (“resnum”) is taken
directly from the topology. Unlike resid, resnum is insensitive to insertion codes.

resname residue-name select by residue name, e.g. resname LYS

name atom-name select by atom name (as given in the topology). Often, this is force field dependent. Example:
name CA (for C-alpha atoms) or name OW (for SPC water oxygen)

type atom-type select by atom type; this is either a string or a number and depends on the force field; it is read from the
topology file (e.g. the CHARMM PSF file contains numeric atom types). This uses the Atom.type topology
attribute.

atom seg-name residue-number atom-name a selector for a single atom consisting of segid resid atomname, e.g.
DMPC 1 C2 selects the C2 carbon of the first residue of the DMPC segment

altloc alternative-location a selection for atoms where alternative locations are available, which is often the case
with high-resolution crystal structures e.g. resid 4 and resname ALA and altloc B selects only
the atoms of ALA-4 that have an altloc B record.

moltype molecule-type select by the moltype topology attribute, e.g. moltype Protein_A. At the moment,
only the TPR format defines the moltype.

Boolean

not all atoms not in the selection, e.g. not protein selects all atoms that aren’t part of a protein

and the intersection of two selections, i.e. the boolean and. e.g. protein and not resname ALA selects all
atoms that belong to a protein but are not in an alanine residue

or the union of two selections, i.e. the boolean or. e.g. protein and not (resname ALA or resname
LYS) selects all atoms that belong to a protein, but are not in a lysine or alanine residue

146 Chapter 2. Participating

MDAnalysis User Guide

Geometric

The geometric keywords below all implement periodic boundary conditions by default when valid cell dimensions are
accessible from the Universe. This can be turned off by passing in the keyword periodic=False:

In [11]: u.select_atoms("around 6 protein", periodic=False)
Out[11]: <AtomGroup with 0 atoms>

around distance selection selects all atoms a certain cutoff away from another selection, e.g. around 3.5
protein selects all atoms not belonging to protein that are within 3.5 Angstroms from the protein

sphzone externalRadius selection selects all atoms within a spherical zone centered in the center of geometry (COG)
of a given selection, e.g. sphzone 6.0 (protein and (resid 130 or resid 80)) selects
the center of geometry of protein, resid 130, resid 80 and creates a sphere of radius 6.0 around the COG.

sphlayer innerRadius externalRadius selection selects all atoms within a spherical layer centered in the center of
geometry (COG) of a given selection, e.g., sphlayer 2.4 6.0 (protein and (resid 130 or
resid 80)) selects the center of geometry of protein, resid 130, resid 80 and creates a spherical layer of
inner radius 2.4 and external radius 6.0 around the COG.

cyzone externalRadius zMax zMin selection selects all atoms within a cylindric zone centered in the center of ge-
ometry (COG) of a given selection, e.g. cyzone 15 4 -8 protein and resid 42 selects the center
of geometry of protein and resid 42, and creates a cylinder of external radius 15 centered on the COG. In z, the
cylinder extends from 4 above the COG to 8 below. Positive values for zMin, or negative ones for zMax, are
allowed.

cylayer innerRadius externalRadius zMax zMin selection selects all atoms within a cylindric layer centered in the
center of geometry (COG) of a given selection, e.g. cylayer 5 10 10 -8 protein selects the center of
geometry of protein, and creates a cylindrical layer of inner radius 5, external radius 10 centered on the COG. In
z, the cylinder extends from 10 above the COG to 8 below. Positive values for zMin, or negative ones for zMax,
are allowed.

point x y z distance selects all atoms within a cutoff of a point in space, make sure coordinate is separated by spaces,
e.g. point 5.0 5.0 5.0 3.5 selects all atoms within 3.5 Angstroms of the coordinate (5.0, 5.0, 5.0)

prop [abs] property operator value selects atoms based on position, using property x, y, or z coordinate. Supports
the abs keyword (for absolute value) and the following operators: <, >, <=, >=, ==, !=. For example, prop z
>= 5.0 selects all atoms with z coordinate greater than 5.0; prop abs z <= 5.0 selects all atoms within
-5.0 <= z <= 5.0.

Similarity and connectivity

same subkeyword as selection selects all atoms that have the same subkeyword value as any atom in selection.
Allowed subkeyword values are the atom properties: name, type, resname, resid, resnum,
segid, mass, charge, radius, bfactor, the groups an atom belong to: residue, segment,
fragment, and the atom coordinates x, y, z. (Note that bfactor currently only works for MMTF for-
mats.) e.g. same charge as protein selects all atoms that have the same charge as any atom in protein.

byres selection selects all atoms that are in the same segment and residue as selection, e.g. specify the subselection
after the byres keyword. byres is a shortcut to same residue as

bonded selection selects all atoms that are bonded to selection e.g.: name H and bonded name N selects only
hydrogens bonded to nitrogens

2.1. Communications 147

MDAnalysis User Guide

Index

index index-range selects all atoms within a range of (0-based) inclusive indices, e.g. index 0 selects the first
atom in the universe; index 5:10 selects the 6th through 11th atoms, inclusive. This uses the Atom.index
topology attribute.

bynum number-range selects all atoms within a range of (1-based) inclusive indices, e.g. bynum 1 selects the first
atom in the universe; bynum 5:10 selects 5th through 10th atoms, inclusive.

Note: These are not the same as the 1-indexed Atom.id topology attribute. bynum simply adds 1 to the
0-indexed Atom.index.

Preexisting selections and modifiers

group group-name selects the atoms in the AtomGroup passed to the function as an argument named group-name.
Only the atoms common to group-name and the instance select_atoms() was called from will be consid-
ered, unless group is preceded by the global keyword. group-name will be included in the parsing just by
comparison of atom indices. This means that it is up to the user to make sure the group-name group was defined
in an appropriate Universe.

global selection by default, when issuing select_atoms() from an AtomGroup, selections and subselections
are returned intersected with the atoms of that instance. Prefixing a selection term with global causes
its selection to be returned in its entirety. As an example, the global keyword allows for lipids.
select_atoms("around 10 global protein") — where lipids is a group that does not contain
any proteins. Were global absent, the result would be an empty selection since the protein subselection
would itself be empty. When calling select_atoms() from a Universe, global is ignored.

Dynamic selections

By default select_atoms() returns an AtomGroup, in which the list of atoms is constant across trajec-
tory frame changes. If select_atoms() is invoked with named argument updating set to True, an
UpdatingAtomGroup instance will be returned instead.

A dynamic selection of corner atoms:
In [12]: ag_updating = u.select_atoms("prop x < 5 and prop y < 5 and prop z < 5",
→˓updating=True)

In [13]: ag_updating
Out[13]: <AtomGroup with 917 atoms, with selection 'prop x < 5 and prop y < 5 and
→˓prop z < 5' on the entire Universe.>

It behaves just like an AtomGroup object, with the difference that the selection expressions are re-evaluated every
time the trajectory frame changes (this happens lazily, only when the UpdatingAtomGroup object is accessed so
that there is no redundant updating going on):

In [14]: u.trajectory.next()
Out[14]: < Timestep 1 with unit cell dimensions [0. 0. 0. 90. 90. 90.] >

In [15]: ag_updating
Out[15]: <AtomGroup with 923 atoms, with selection 'prop x < 5 and prop y < 5 and
→˓prop z < 5' on the entire Universe.>

148 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.select_atoms
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.select_atoms
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.select_atoms
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.select_atoms
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.select_atoms
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.UpdatingAtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.UpdatingAtomGroup

MDAnalysis User Guide

Using the group selection keyword for Preexisting selections and modifiers, one can make updating selections depend
on AtomGroup, or even other UpdatingAtomGroup, instances. Likewise, making an updating selection from an
already updating group will cause later updates to also reflect the updating of the base group:

In [16]: chained_ag_updating = ag_updating.select_atoms("resid 1:1000", updating=True)

In [17]: chained_ag_updating
Out[17]: <AtomGroup with 923 atoms, with selection 'resid 1:1000' on another
→˓AtomGroup.>

In [18]: u.trajectory.next()
Out[18]: < Timestep 2 with unit cell dimensions [0. 0. 0. 90. 90. 90.] >

In [19]: chained_ag_updating
Out[19]: <AtomGroup with 921 atoms, with selection 'resid 1:1000' on another
→˓AtomGroup.>

Finally, a non-updating selection or a slicing/addition operation made on an UpdatingAtomGroup will return a
static AtomGroup, which will no longer update across frames:

In [20]: static_ag = ag_updating.select_atoms("resid 1:1000")

In [21]: static_ag
Out[21]: <AtomGroup with 921 atoms>

In [22]: u.trajectory.next()
Out[22]: < Timestep 3 with unit cell dimensions [0. 0. 0. 90. 90. 90.] >

In [23]: static_ag
Out[23]: <AtomGroup with 921 atoms>

Ordered selections

select_atoms() sorts the atoms in the AtomGroup by atom index before returning them (this is to eliminate
possible duplicates in the selection). If the ordering of atoms is crucial (for instance when describing angles or
dihedrals) or if duplicate atoms are required then one has to concatenate multiple AtomGroups, which does not sort
them.

The most straightforward way to concatenate two AtomGroups is by using the + operator:

In [14]: ordered = u.select_atoms("resid 3 and name CA") + u.select_atoms("resid 2
→˓and name CA")

In [15]: list(ordered)
Out[15]:
[<Atom 46: CA of type 22 of resname ILE, resid 3 and segid 4AKE>,
<Atom 22: CA of type 22 of resname ARG, resid 2 and segid 4AKE>]

A shortcut is to provide two or more selections to select_atoms(), which then does the concatenation automati-
cally:

In [16]: list(u.select_atoms("resid 3 and name CA", "resid 2 and name CA"))
Out[16]:
[<Atom 46: CA of type 22 of resname ILE, resid 3 and segid 4AKE>,
<Atom 22: CA of type 22 of resname ARG, resid 2 and segid 4AKE>]

Just for comparison to show that a single selection string does not work as one might expect:

2.1. Communications 149

https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.UpdatingAtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.UpdatingAtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.select_atoms
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.select_atoms

MDAnalysis User Guide

In [17]: list(u.select_atoms("(resid 3 or resid 2) and name CA"))
Out[17]:
[<Atom 22: CA of type 22 of resname ARG, resid 2 and segid 4AKE>,
<Atom 46: CA of type 22 of resname ILE, resid 3 and segid 4AKE>]

2.1.9 The topology system

MDAnalysis groups static data about a Universe into its topology. This is typically loaded from a topology file.
Topology information falls into 3 categories:

• Atom containers (Residues and Segments)

• Atom attributes (e.g. name, mass, bfactor)

• Topology objects: bonds, angles, dihedrals, impropers

Users will almost never interact directly with a Topology. Modifying atom containers or topology attributes is
typically done through Universe. Methods for viewing containers or topology attributes, or for calculating topology
object values, are accessed through AtomGroup.

Topology attributes

MDAnalysis supports a range of topology attributes for each Atom and AtomGroup. If an attribute is defined for an
Atom, it will be for an AtomGroup, and vice versa – however, they are accessed with singular and plural versions of
the attribute specifically.

Canonical attributes

These attributes are derived for every Universe, including Universes created with empty(). They encode the
MDAnalysis order of each object.

Atom AtomGroup Description
index indices MDAnalysis canonical atom index (from 0)
resindex resindices MDAnalysis canonical residue index (from 0)
segindex segindices MDAnalysis segment index (from 0)

The following attributes are read or guessed from every format supported by MDAnalysis.

Atom AtomGroup Description
id ids atom serial (from 1, except PSF/DMS/TPR formats)
mass masses atom mass (guessed, default: 0.0)
resid resids residue number (from 1, except for TPR)
resnum resnums alias of resid
segid segids names of segments (default: ‘SYSTEM’)
type types atom name, atom element, or force field atom type

Format-specific attributes

The table below lists attributes that are read from supported formats. These can also be added to a Universe created
from a file that does not support them.

150 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/core/topology.html#MDAnalysis.core.topology.Topology
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Atom
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.empty

MDAnalysis User Guide

Atom Atom-
Group

Description Supported formats

alt-
Loc

alt-
Locs

Alternate loca-
tion

MMTF, PDB, ENT , PDBQT , XPDB

an-
gles

angles DATA, GSD, PSF, TOP, PRMTOP, PARM7, TPR, XML

atom-
iccha-
rge

atom-
iccha-
rges

Atomic number GMS

atom-
num

atom-
nums

? DMS

bfac-
tor

bfac-
tors

alias of tempfac-
tor

MMTF

bonds bonds DATA, DMS, GSD, MMTF, MOL2, PDB, ENT , PSF, TOP, PRMTOP,
PARM7, TPR, TXYZ, ARC, XML, XPDB

chainID chainIDs chain ID DMS, PDB, ENT , XPDB
charge charges partial atomic

charge
DATA, DMS, GSD, MMTF, MOL2, PDBQT , PQR, PSF, TOP, PRMTOP,
PARM7, TPR, XML

dihe-
drals

dihe-
drals

DATA, GSD, PSF, TOP, PRMTOP, PARM7, TPR, XML

ele-
ment

ele-
ments

atom element TOP, PRMTOP, PARM7

icode icodes atom insertion
code

MMTF, PDB, ENT , PDBQT , PQR, XPDB

im-
prop-
ers

im-
prop-
ers

DATA, GSD, PSF, TOP, PRMTOP, PARM7, TPR, XML

model mod-
els

model number
(from 0)

MMTF

mol-
num

mol-
nums

[molecules]
number (from 0)

TPR

moltype moltypes [moleculetype]
name

TPR

name names atom names CONFIG, CRD, DMS, GMS, GRO, GSD, HISTORY , MMTF, MOL2, PDB,
ENT , PDBQT , PQR, PSF, TOP, PRMTOP, PARM7, TPR, TXYZ, ARC,
XPDB, XYZ

occu-
pancy

occu-
pan-
cies

atom occupancy MMTF, PDB, ENT , PDBQT , XPDB

radius radii atomic radius GSD, PQR, XML
record_typerecord_typesATOM / HET-

ATM
PDB, ENT , PDBQT , PQR, XPDB

resname resnames residue name
(except GSD has
ints)

CRD, DMS, GRO, GSD, MMTF, MOL2, PDB, ENT , PDBQT , PQR, PSF,
TOP, PRMTOP, PARM7, TPR, XPDB

temp-
factor

temp-
factors

B-factor CRD, PDB, ENT , PDBQT , XPDB

type_indextype_indicesamber atom type
number

TOP, PRMTOP, PARM7

2.1. Communications 151

MDAnalysis User Guide

Connectivity information

MDAnalysis can also read connectivity information, if the file provides it. These become available as Topology objects,
which have additional functionality.

Atom Atom-
Group

Supported formats

angles angles DATA, GSD, PSF, TOP, PRMTOP, PARM7, TPR, XML
bonds bonds DATA, DMS, GSD, MMTF, MOL2, PDB, ENT , PSF, TOP, PRMTOP, PARM7, TPR, TXYZ,

ARC, XML, XPDB
dihe-
drals

dihedrals DATA, GSD, PSF, TOP, PRMTOP, PARM7, TPR, XML

improp-
ers

impropers DATA, GSD, PSF, TOP, PRMTOP, PARM7, TPR, XML

Adding TopologyAttrs

Each of the attributes above can be added to a Universe if it was not available in the file with
add_TopologyAttr().

add_TopologyAttr() takes two arguments:

• topologyattr : the singular or plural name of a TopologyAttr, or a MDAnalysis TopologyAttr object. This
must already have been defined as a TopologyAttr (see Adding custom TopologyAttrs for an example of
adding a custom topology attribute).

• values (optional) : if topologyattr is a string, the values for that attribute. This can be None if the
attribute has default values defined, e.g. bfactors.

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import PSF

In [3]: psf = mda.Universe(PSF)

In [4]: hasattr(psf.atoms, 'bfactors')
Out[4]: False

In [5]: psf.add_TopologyAttr('bfactors')

In [6]: psf.atoms.bfactors
Out[6]: array([0., 0., 0., ..., 0., 0., 0.])

One way to modify topology attributes is to simply replace them with add_TopologyAttr():

In [7]: psf.add_TopologyAttr('bfactors', range(len(psf.atoms)))

In [8]: psf.atoms.bfactors
Out[8]:
array([0.000e+00, 1.000e+00, 2.000e+00, ..., 3.338e+03, 3.339e+03,

3.340e+03])

The number of values provided should correspond with the “level” of the attribute. For example, B-factors are atomic-
level information. However, residue names and residue ids apply to residues. See a table of attribute levels and default
values for more information.

152 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.add_TopologyAttr
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.add_TopologyAttr
https://www.mdanalysis.org/docs/documentation_pages/core/topologyattrs.html#MDAnalysis.core.topologyattrs.TopologyAttr
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.add_TopologyAttr

MDAnalysis User Guide

Modifying TopologyAttrs

Existing topology attributes can be directly modified by assigning new values.

In [9]: import MDAnalysis as mda

In [10]: from MDAnalysis.tests.datafiles import PDB

In [11]: pdb = mda.Universe(PDB)

In [12]: pdb.residues[:3].resnames
Out[12]: array(['MET', 'ARG', 'ILE'], dtype=object)

In [13]: pdb.residues[:3].resnames = ['RES1', 'RES2', 'RES3']

In [14]: pdb.residues[:3].atoms.resnames
Out[14]:
array(['RES1', 'RES1', 'RES1', 'RES1', 'RES1', 'RES1', 'RES1', 'RES1',

'RES1', 'RES1', 'RES1', 'RES1', 'RES1', 'RES1', 'RES1', 'RES1',
'RES1', 'RES1', 'RES1', 'RES2', 'RES2', 'RES2', 'RES2', 'RES2',
'RES2', 'RES2', 'RES2', 'RES2', 'RES2', 'RES2', 'RES2', 'RES2',
'RES2', 'RES2', 'RES2', 'RES2', 'RES2', 'RES2', 'RES2', 'RES2',
'RES2', 'RES2', 'RES2', 'RES3', 'RES3', 'RES3', 'RES3', 'RES3',
'RES3', 'RES3', 'RES3', 'RES3', 'RES3', 'RES3', 'RES3', 'RES3',
'RES3', 'RES3', 'RES3', 'RES3', 'RES3', 'RES3'], dtype=object)

Note: This method cannot be used with connectivity attributes, i.e. bonds, angles, dihedrals, and impropers.

Similarly to adding topology attributes with add_TopologyAttr(), the “level” of the attribute matters. Residue
attributes can only be assigned to attributes at the Residue or ResidueGroup level. The same applies to attributes
for Atoms and Segments. For example, we would get a NotImplementedError if we tried to assign resnames to an
AtomGroup.

In [15]: pdb.residues[0].atoms.resnames = ['new_name']

NotImplementedErrorTraceback (most recent call last)
<ipython-input-15-0f99b0dc5f49> in <module>
----> 1 pdb.residues[0].atoms.resnames = ['new_name']
...
NotImplementedError: Cannot set resnames from AtomGroup. Use 'AtomGroup.residues.
→˓resnames = '

Default values and attribute levels

Topology information in MDAnalysis is always associated with a level: one of atom, residue, or segment. For example,
indices is Atom information, resindices is Residue information, and segindices is Segment information.
Many topology attributes also have default values, so that they can be added to a Universe without providing ex-
plicit values, and expected types. The table below lists which attributes have default values, what they are, and the
information level.

2.1. Communications 153

https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.add_TopologyAttr

MDAnalysis User Guide

Atom AtomGroup default level type
altLocs altLoc ‘’ atom <class ‘object’>
angles angles No default values atom
atomiccharges atomiccha-

rge
No default values atom

atomnums atomnum No default values atom
bfactors bfactor 0.0 atom <class ‘float’>
bonds bonds No default values atom
chainIDs chainID ‘’ atom <class ‘object’>
charges charge 0.0 atom <class ‘float’>
dihedrals dihedrals No default values atom
elements element ‘’ atom <class ‘object’>
icodes icode ‘’ residue <class ‘object’>
ids id continuous sequence from 1 to n_atoms atom <class ‘int’>
impropers impropers No default values atom
masses mass 0.0 atom <class

‘numpy.float64’>
models model No default values seg-

ment
molnums molnum No default values residue <class ‘numpy.int64’>
moltypes moltype No default values residue <class ‘object’>
names name ‘’ atom <class ‘object’>
occupancies occupancy 0.0 atom <class ‘float’>
radii radius 0.0 atom <class ‘float’>
record_types record_type ‘ATOM’ atom <class ‘object’>
resids resid continuous sequence from 1 to n_residues residue <class ‘int’>
resnames resname ‘’ residue <class ‘object’>
resnums resnum continuous sequence from 1 to n_residues residue <class ‘int’>
segids segid ‘’ seg-

ment
<class ‘object’>

tempfactors tempfactor 0.0 atom <class ‘float’>
type_indices type_index No default values atom
types type ‘’ atom <class ‘object’>

Topology objects

MDAnalysis defines four types of TopologyObject by connectivity:

• Bond

• Angle

• Dihedral

• ImproperDihedral

The value of each topology object can be calculated with value().

Each TopologyObject also contains the following attributes:

• atoms : the ordered atoms in the object

• indices : the ordered atom indices in the object

• type : this is either the ‘type’ of the bond/angle/dihedral/improper, or a tuple of the atom types.

154 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/core/topologyobjects.html#MDAnalysis.core.topologyobjects.TopologyObject
https://www.mdanalysis.org/docs/documentation_pages/core/topologyobjects.html#MDAnalysis.core.topologyobjects.Bond
https://www.mdanalysis.org/docs/documentation_pages/core/topologyobjects.html#MDAnalysis.core.topologyobjects.Angle
https://www.mdanalysis.org/docs/documentation_pages/core/topologyobjects.html#MDAnalysis.core.topologyobjects.Dihedral
https://www.mdanalysis.org/docs/documentation_pages/core/topologyobjects.html#MDAnalysis.core.topologyobjects.ImproperDihedral
https://www.mdanalysis.org/docs/documentation_pages/core/topologyobjects.html#MDAnalysis.core.topologyobjects.TopologyObject
https://www.mdanalysis.org/docs/documentation_pages/core/topologyobjects.html#MDAnalysis.core.topologyobjects.TopologyObject.atoms
https://www.mdanalysis.org/docs/documentation_pages/core/topologyobjects.html#MDAnalysis.core.topologyobjects.TopologyObject.indices
https://www.mdanalysis.org/docs/documentation_pages/core/topologyobjects.html#MDAnalysis.core.topologyobjects.TopologyObject.type

MDAnalysis User Guide

• is_guessed : MDAnalysis can guess bonds. This property records if the object was read from a file or
guessed.

Groups of these are held in TopologyGroups. The master groups of TopologyObjects are accessible as properties of
a Universe. TopologyObjects are typically read from a file with connectivity information (see the supported formats
here). However, they can be created in two ways: by adding them to a Universe, or by creating them from an
AtomGroup. Bonds can be guessed based on distance and Van der Waals’ radii with AtomGroup.guess_bonds.

Adding to a Universe

As of version 0.21.0, there are specific methods for adding TopologyObjects to a Universe:

• add_Bonds()

• add_Angles()

• add_Dihedrals()

• add_Impropers()

These accept the following values:

• a TopologyGroup

• an iterable of atom indices

• an iterable of TopologyObjects

Prior to version 0.21.0, objects could be added to a Universe with add_TopologyAttr().

In [15]: hasattr(pdb, 'angles')
Out[15]: False

In [16]: pdb.add_TopologyAttr('angles', [(0, 1, 2), (2, 3, 4)])

In [17]: pdb.angles
Out[17]: <TopologyGroup containing 2 angles>

Both of these methods add the new objects to the associated master TopologyGroup in the Universe.

Creating with an AtomGroup

An AtomGroup can be represented as a bond, angle, dihedral angle, or improper angle TopologyObject through
the respective properties:

• bond

• angle

• dihedral

• improper

The AtomGroup must contain the corresponding number of atoms, in the desired order. For example, a bond cannot
be created from three atoms.

In [18]: pdb.atoms[[3, 4, 2]].bond

ValueErrorTraceback (most recent call last)
<ipython-input-21-e59c36ab66f4> in <module>

(continues on next page)

2.1. Communications 155

https://www.mdanalysis.org/docs/documentation_pages/core/topologyobjects.html#MDAnalysis.core.topologyobjects.TopologyGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.guess_bonds
https://www.mdanalysis.org/docs/documentation_pages/core/topologyobjects.html#MDAnalysis.core.topologyobjects.TopologyObject
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/core/topologyobjects.html#MDAnalysis.core.topologyobjects.TopologyGroup
https://www.mdanalysis.org/docs/documentation_pages/core/topologyobjects.html#MDAnalysis.core.topologyobjects.TopologyObject
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.add_TopologyAttr
https://www.mdanalysis.org/docs/documentation_pages/core/topologyobjects.html#MDAnalysis.core.topologyobjects.TopologyGroup
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/topologyobjects.html#MDAnalysis.core.topologyobjects.TopologyObject
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.bond
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.angle
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.dihedral
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.improper
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup

MDAnalysis User Guide

(continued from previous page)

----> 1 pdb.atoms[[3, 4, 2]].bond
...
ValueError: bond only makes sense for a group with exactly 2 atoms

However, the angle Atom 2 —– Atom 4 —— Atom 3 can be calculated, even if the atoms are not connected with
bonds.

In [18]: a = pdb.atoms[[3, 4, 2]].angle

In [19]: print(a.value())
47.770653826924175

These AtomGroup TopologyObjects are not added to the associated master TopologyGroup in the
Universe.

Deleting from a Universe

As of version 0.21.0, there are specific methods for deleting TopologyObjects from a Universe:

• delete_Bonds()

• delete_Angles()

• delete_Dihedrals()

• delete_Impropers()

Topology-specific methods

A number of analysis and transformation methods are defined for AtomGroup, ResidueGroup, and
SegmentGroup that require specific properties to be available. The primary requirement is the positions attribute.
With positions, you can easily compute a center of geometry:

>>> u.atoms.center_of_geometry()
array([-0.04223882, 0.01418196, -0.03504874])

The following methods all require coordinates.

• bbox()

• bsphere()

• center()

• center_of_geometry()

• centroid()

• pack_into_box()

• rotate()

• rotate_by()

• transform()

• translate()

• unwrap()

156 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/core/topologyobjects.html#MDAnalysis.core.topologyobjects.TopologyObject
https://www.mdanalysis.org/docs/documentation_pages/core/topologyobjects.html#MDAnalysis.core.topologyobjects.TopologyGroup
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/core/topologyobjects.html#MDAnalysis.core.topologyobjects.TopologyObject
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.ResidueGroup
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.SegmentGroup

MDAnalysis User Guide

• wrap()

Other methods are made available when certain topology attributes are defined in the Universe. These are listed below.

Method Description Re-
quires

total_charge() Total charge of (compounds of) the group charges
align_principal_axis() Align principal axis with index axis with vector masses
asphericity() Asphericity masses
center_of_mass() Center of mass of (compounds of) the group masses
moment_of_inertia() Tensor moment of inertia relative to center of mass as 3x3 numpy

array
masses

principal_axes() Calculate the principal axes from the moment of inertia masses
radius_of_gyration() Radius of gyration masses
shape_parameter() Shape parameter masses
total_mass() Total mass of (compounds of) the group masses

2.1.10 Trajectories

In MDAnalysis, static data is contained in your universe Topology, while dynamic data is drawn from its trajectory at
Universe.trajectory. This is typically loaded from a trajectory file and includes information such as:

• atom coordinates (Universe.atoms.positions)

• box size (Universe.dimensions)

• velocities and forces (if your file format contains the data) (Universe.atoms.velocities)

Although these properties look static, they are actually dynamic, and the data contained within can change. In order
to remain memory-efficient, MDAnalysis does not load every frame of your trajectory into memory at once. Instead,
a Universe has a state: the particular timestep that it is currently associated with in the trajectory. When the timestep
changes, the data in the properties above shifts accordingly.

The typical way to change a timestep is to index it. Universe.trajectory can be thought of as a list of
Timesteps, a data structure that holds information for the current time frame. For example, you can query its
length.

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import PSF, DCD

In [3]: u = mda.Universe(PSF, DCD)

In [4]: len(u.trajectory)
Out[4]: 98

When a trajectory is first loaded from a file, it is set to the first frame (with index 0), by default.

In [5]: print(u.trajectory.ts, u.trajectory.time)
< Timestep 0 with unit cell dimensions [0. 0. 0. 90. 90. 90.] > 0.9999999119200186

Indexing the trajectory returns the timestep for that frame, and sets the Universe to point to that frame until the timestep
next changes.

In [6]: u.trajectory[3]
Out[6]: < Timestep 3 with unit cell dimensions [0. 0. 0. 90. 90. 90.] >

2.1. Communications 157

https://www.mdanalysis.org/docs/documentation_pages/core/topologyattrs.html#MDAnalysis.core.topologyattrs.Charges.total_charge
https://www.mdanalysis.org/docs/documentation_pages/core/topologyattrs.html#MDAnalysis.core.topologyattrs.Masses.align_principal_axis
https://www.mdanalysis.org/docs/documentation_pages/core/topologyattrs.html#MDAnalysis.core.topologyattrs.Masses.asphericity
https://www.mdanalysis.org/docs/documentation_pages/core/topologyattrs.html#MDAnalysis.core.topologyattrs.Masses.center_of_mass
https://www.mdanalysis.org/docs/documentation_pages/core/topologyattrs.html#MDAnalysis.core.topologyattrs.Masses.moment_of_inertia
https://www.mdanalysis.org/docs/documentation_pages/core/topologyattrs.html#MDAnalysis.core.topologyattrs.Masses.principal_axes
https://www.mdanalysis.org/docs/documentation_pages/core/topologyattrs.html#MDAnalysis.core.topologyattrs.Masses.radius_of_gyration
https://www.mdanalysis.org/docs/documentation_pages/core/topologyattrs.html#MDAnalysis.core.topologyattrs.Masses.shape_parameter
https://www.mdanalysis.org/docs/documentation_pages/core/topologyattrs.html#MDAnalysis.core.topologyattrs.Masses.total_mass
https://www.mdanalysis.org/docs/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.Timestep

MDAnalysis User Guide

In [7]: print('Time of fourth frame', u.trajectory.time)
Time of fourth frame 3.9999996476800743

Many tasks involve applying a function to each frame of a trajectory. For these, you need to iterate through the frames,
even if you don’t directly use the timestep. This is because the act of iterating moves the Universe onto the next frame,
changing the dynamic atom coordinates.

Trajectories can also be sliced if you only want to work on a subset of frames.

In [8]: protein = u.select_atoms('protein')

In [9]: for ts in u.trajectory[:20:4]:
...: rad = protein.radius_of_gyration()
...: print('frame={}: radgyr={}'.format(ts.frame, rad))
...:

frame=0: radgyr=16.66901836864977
frame=4: radgyr=16.74396089321755
frame=8: radgyr=16.789386458745813
frame=12: radgyr=16.872313632082165
frame=16: radgyr=17.003316543310994

Note that after iterating over the trajectory, the frame is always set back to the first frame, even if your loop stopped
before the trajectory end.

In [10]: u.trajectory.frame
Out[10]: 0

Because MDAnalysis will pull trajectory data directly from the file it is reading from, changes to atom coordinates and
box dimensions will not persist once the frame is changed. The only way to make these changes permanent is to load
the trajectory into memory, or to write a new trajectory to file for every frame. For example, to set a cubic box size for
every frame and write it out to a file:

with mda.Writer('with_box.trr', 'w', n_atoms=u.atoms.n_atoms) as w:
for ts in u.trajectory:

ts.dimensions = [10, 10, 10, 90, 90, 90]
w.write(u.atoms)

u_with_box = mda.Universe(PSF, 'with_box.trr')

Sometimes you may wish to only transform part of the trajectory, or to not write a file out. In these cases, MDAnalysis
supports “on-the-fly” transformations that are performed on a frame when it is read.

2.1.11 Slicing trajectories

MDAnalysis trajectories can be indexed to return a Timestep, or sliced to give a FrameIterator.

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import PSF, DCD

In [3]: u = mda.Universe(PSF, DCD)

In [4]: u.trajectory[4]
Out[4]: < Timestep 4 with unit cell dimensions [0. 0. 0. 90. 90. 90.] >

158 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.Timestep

MDAnalysis User Guide

Indexing a trajectory shifts the Universe to point towards that particular frame, updating dynamic data such as
Universe.atoms.positions.

Note: The trajectory frame is not read from the MD data. It is the internal index assigned by MDAnalysis.

In [5]: u.trajectory.frame
Out[5]: 4

Creating a FrameIterator by slicing a trajectory does not shift the Universe to a new frame, but iterating over
the sliced trajectory will rewind the trajectory back to the first frame.

In [6]: fiter = u.trajectory[10::10]

In [7]: frames = [ts.frame for ts in fiter]

In [8]: print(frames, u.trajectory.frame)
[10, 20, 30, 40, 50, 60, 70, 80, 90] 0

You can also create a sliced trajectory with boolean indexing and fancy indexing. Boolean indexing allows you to select
only frames that meet a certain condition, by passing a ndarray with the same length as the original trajectory. Only
frames that have a boolean value of True will be in the resulting FrameIterator. For example, to select only the
frames of the trajectory with an RMSD under 2 angstrom:

In [9]: from MDAnalysis.analysis import rms

In [10]: protein = u.select_atoms('protein')

In [11]: rmsd = rms.RMSD(protein, protein).run()

In [12]: bools = rmsd.rmsd.T[-1] < 2

In [13]: print(bools)
[True True True True True True True True True True True True

True True False False False False False False False False False False
False False False False False False False False False False False False
False False False False False False False False False False False False
False False False False False False False False False False False False
False False False False False False False False False False False False
False False False False False False False False False False False False
False False False False False False False False False False False False
False False]

In [14]: fiter = u.trajectory[bools]

In [15]: print([ts.frame for ts in fiter])
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]

You can also use fancy indexing to control the order of specific frames.

In [16]: indices = [10, 2, 3, 9, 4, 55, 2]

In [17]: print([ts.frame for ts in u.trajectory[indices]])
[10, 2, 3, 9, 4, 55, 2]

You can even slice a FrameIterator to create a new FrameIterator.

2.1. Communications 159

https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

MDAnalysis User Guide

In [18]: print([ts.frame for ts in fiter[::3]])
[0, 3, 6, 9, 12]

2.1.12 On-the-fly transformations

An on-the-fly transformation is a function that silently modifies the dynamic data contained in a trajectory Timestep
(typically coordinates) as it is loaded into memory. It is called for each current time step to transform data into your
desired representation. A transformation function must also return the current Timestep, as transformations are
often chained together.

The MDAnalysis.transformations module contains a collection of transformations. For example,
fit_rot_trans() can perform a mass-weighted alignment on an AtomGroup to a reference.

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import TPR, XTC

In [3]: from MDAnalysis import transformations as trans

In [4]: u = mda.Universe(TPR, XTC)

In [5]: protein = u.select_atoms('protein')

In [6]: align_transform = trans.fit_rot_trans(protein, protein, weights='mass')

In [7]: u.trajectory.add_transformations(align_transform)

Other implemented transformations include functions to translate, rotate, fit an AtomGroup to a reference,
and wrap or unwrap groups in the unit cell.

Although you can only call add_transformations() once, you can pass in multiple transformations in a list,
which will be executed in order. For example, the below workflow:

• makes all molecules whole (unwraps them over periodic boundary conditions)

• centers the protein in the center of the box

• wraps water back into the box

create new Universe for new transformations
In [8]: u = mda.Universe(TPR, XTC)

In [9]: protein = u.select_atoms('protein')

In [10]: water = u.select_atoms('resname SOL')

In [11]: workflow = [trans.unwrap(u.atoms),
....: trans.center_in_box(protein, center='geometry'),
....: trans.wrap(water, compound='residues')]
....:

In [12]: u.trajectory.add_transformations(*workflow)

If your transformation does not depend on something within the Universe (e.g. a chosen AtomGroup), you can
also create a Universe directly with transformations. The code below translates coordinates 1 angstrom up on the
z-axis:

160 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.Timestep
https://www.mdanalysis.org/docs/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.Timestep
https://www.mdanalysis.org/docs/documentation_pages/trajectory_transformations.html#module-MDAnalysis.transformations
https://www.mdanalysis.org/docs/documentation_pages/transformations/fit.html#MDAnalysis.transformations.fit.fit_rot_trans
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/transformations/translate.html#module-MDAnalysis.transformations.translate
https://www.mdanalysis.org/docs/documentation_pages/transformations/rotate.html#module-MDAnalysis.transformations.rotate
https://www.mdanalysis.org/docs/documentation_pages/transformations/fit.html#module-MDAnalysis.transformations.fit
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/transformations/wrap.html#module-MDAnalysis.transformations.wrap
https://www.mdanalysis.org/docs/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.ProtoReader.add_transformations
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe

MDAnalysis User Guide

In [13]: u = mda.Universe(TPR, XTC, transformations=[trans.translate([0, 0, 1])])

If you need a different transformation, it is easy to implement your own.

Custom transformations

At its core, a transformation function must only take a Timestep as its input and return the Timestep as the output.

In [14]: def up_by_2(ts):
....: """Translates atoms up by 2 angstrom"""
....: ts.positions += np.array([0.0, 0.0, 0.2])
....: return ts
....:

In [15]: u = mda.Universe(TPR, XTC, transformations=[up_by_2])

If your transformation needs other arguments, you will need to wrap your core transformation with a wrapper function
that can accept the other arguments.

In [16]: def up_by_x(x):
....: """Translates atoms up by x angstrom"""
....: def wrapped(ts):
....: """Handles the actual Timestep"""
....: ts.positions += np.array([0.0, 0.0, float(x)])
....: return ts
....: return wrapped
....:

load Universe with transformations that move it up by 7 angstrom
In [17]: u = mda.Universe(TPR, XTC, transformations=[up_by_x(5), up_by_x(2)])

Alternatively, you can use functools.partial() to substitute the other arguments.

In [18]: import functools

In [19]: def up_by_x(ts, x):
....: ts.positions += np.array([0.0, 0.0, float(x)])
....: return ts
....:

In [20]: up_by_5 = functools.partial(up_by_x, x=5)

In [21]: u = mda.Universe(TPR, XTC, transformations=[up_by_5])

On-the-fly transformation functions can be applied to any property of a Timestep, not just the atom positions. For
example, to give each frame of a trajectory a box:

In [22]: def set_box(ts):
....: ts.dimensions = [10, 20, 30, 90, 90, 90]
....: return ts
....:

In [23]: u = mda.Universe(TPR, XTC, transformations=[set_box])

2.1. Communications 161

https://www.mdanalysis.org/docs/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.Timestep
https://www.mdanalysis.org/docs/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.Timestep
https://docs.python.org/3/library/functools.html#functools.partial

MDAnalysis User Guide

2.1.13 Units and constants

The units of MDAnalysis trajectories are the Å (ångström) for length and ps (picosecond) for time. Regardless of
how the original MD format stored the trajectory data, MDAnalysis converts it to MDAnalysis units when reading
the data in, and converts back when writing the data out. Analysis classes generally also use these default units.
Exceptions to the default units are always noted in the documentation; for example, mass densities can be given in
𝑔/𝑐𝑚3.

Other base units are listed in the table Base units in MDAnalysis.

Table 1: Base units in MDAnalysis
Quantity Unit SI units
length Å 10−10 m
time ps 10−12 s
energy kJ/mol 1.66053892103219 × 10−21 J
charge 𝑒 1.602176565 × 10−19 As
force kJ/(mol·Å) 1.66053892103219 × 10−11 J/m
speed Å/ps 100 m/s
mass u 1.66053906660(50) × 10−27 kg
angle degrees 𝜋

180 rad

Unit conversion

Quantities can be converted from units with convert(). convert() simply multiplies the initial quantity with a
precomputed conversion factor, as obtained from get_conversion_factor().

The computed conversion factors for each quantity type are stored in MDAnalysis.units and shown below.

Constants

Length

Unit Conversion factor
A 1
Angstrom 1
angstrom 1
femtometer 100000
fm 100000
nanometer 0.1
nm 0.1
picometer 100
pm 100

1

162 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/units.html#MDAnalysis.units.convert
https://www.mdanalysis.org/docs/documentation_pages/units.html#MDAnalysis.units.convert
https://www.mdanalysis.org/docs/documentation_pages/units.html#MDAnalysis.units.get_conversion_factor
https://www.mdanalysis.org/docs/documentation_pages/units.html#module-MDAnalysis.units

MDAnalysis User Guide

Density

Unit Conversion factor
A^{-3} 1
Angstrom^{-3} 1
Molar 1660.54
SPC 30.3718
TIP3P 29.8566
TIP4P 29.8864
nanometer^{-3} 1000
nm^{-3} 1000
water 30.0063
^{-3} 1

Time

Unit Conversion factor
AKMA 20.4548
femtosecond 1000
fs 1000
nanosecond 0.001
ns 0.001
picosecond 1
ps 1
s 1e-12
sec 1e-12
second 1e-12

Charge

Unit Conversion factor
Amber 18.2223
As 1.60218e-19
C 1.60218e-19
e 1

2.1. Communications 163

MDAnalysis User Guide

Speed

Unit Conversion factor
A/ps 1
Angstrom/AKMA 0.0488882
Angstrom/femtosecond 1000
Angstrom/fs 1000
Angstrom/picosecond 1
Angstrom/ps 1
angstrom/femtosecond 1000
angstrom/fs 1000
angstrom/picosecond 1
m/s 100
nanometer/picosecond 0.1
nanometer/ps 0.1
nm/ns 100
nm/ps 0.1
pm/ps 100
/ps 1

Force

Unit Conversion factor
J/m 1.66054e-11
N 1.66054e-11
Newton 1.66054e-11
kJ/(mol*A) 1
kJ/(mol*Angstrom) 1
kJ/(mol*nm) 10
kJ/(mol*) 1
kcal/(mol*Angstrom) 0.239006

Energy

Unit Conversion factor
J 1.66054e-21
eV 0.0103643
kJ/mol 1
kcal/mol 0.239006

2.1.14 Reading and writing files

Input

Read information from topology and coordinate files to create a Universe:

164 Chapter 2. Participating

MDAnalysis User Guide

import MDAnalysis as mda
u = mda.Universe('topology.gro', 'trajectory.xtc')

A topology file is always required for a Universe, whereas coordinate files are optional. Some file formats provide both
topology and coordinate information. MDAnalysis supports a number of formats, which are automatically detected
based on the file extension. For example, the above loads a GROMACS XTC trajectory. Multiple coordinate files can
be loaded, as described below; the following code loads two CHARMM/NAMD DCD files and concatenates them:

u = mda.Universe('topology.psf', 'trajectory1.dcd', 'trajectory2.dcd')

Some formats can be loaded with format-specific keyword arguments, such as the LAMMPS DATA atom_style
specification.

See also:

See Loading from files for more information on loading data into a Universe from files.

Reading multiple trajectories

A Universe can load multiple trajectories, which are concatenated in the order given. One exception to this is with XTC
and TRR files. If the continuous=True flag is passed to Universe, MDAnalysis will try to stitch them together so
that the trajectory is as time-continuous as possible. This means that there will be no duplicate time-frames, or jumps
back in time.

As an example, the following depicted trajectory is split into four parts. The column represents the time. As you can
see, some segments overlap. With continuous=True, only the frames marked with a + will be read.

part01: ++++--
part02: ++++++-
part03: ++++++++
part04: ++++

However, there can be gaps in time (i.e. frames appear to be missing). Ultimately it is the user’s responsiblity to ensure
that the trajectories can be stitched together meaningfully.

Note: While you can set continuous=True for either XTC or TRR files, you cannot mix different formats.

More information can be found at the API reference for ChainReader.

Trajectory formats

If no format keyword is provided, ChainReader will try to guess the format for each file from its extension. You
can force ChainReader to use the same format for every file by using the format keyword. You can also specify
which format to use by file, by passing in a sequence of (filename, format) tuples.

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import PDB, GRO

In [3]: u = mda.Universe(PDB, [(GRO, 'gro'), (PDB, 'pdb'), (GRO, 'gro')])

In [4]: u.trajectory
Out[4]: <ChainReader containing adk_oplsaa.gro, adk_oplsaa.pdb, adk_oplsaa.gro with 3
→˓frames of 47681 atoms>

2.1. Communications 165

https://www.mdanalysis.org/docs/documentation_pages/coordinates/chain.html#MDAnalysis.coordinates.chain.ChainReader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/chain.html#MDAnalysis.coordinates.chain.ChainReader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/chain.html#MDAnalysis.coordinates.chain.ChainReader

MDAnalysis User Guide

In-memory trajectories

Reading trajectories into memory

If your device has sufficient memory to load an entire trajectory into memory, then analysis can be sped up substan-
tially by transferring the trajectory to memory. This makes it possible to operate on raw coordinates using existing
MDAnalysis tools. In addition, it allows the user to make changes to the coordinates in a trajectory (e.g. through
AtomGroup.positions) without having to write the entire state to file.

The most straightforward way to do this is to pass in_memory=True to Universe, which automatically transfers
a trajectory to memory:

In [5]: from MDAnalysis.tests.datafiles import TPR, XTC

In [6]: universe = mda.Universe(TPR, XTC, in_memory=True)

MDAnalysis uses the MemoryReader class to load this data in.

Transferring trajectories into memory

The decision to transfer the trajectory to memory can be made at any time with the transfer_to_memory()
method of a Universe:

In [7]: universe = mda.Universe(TPR, XTC)

In [8]: universe.transfer_to_memory()

This operation may take a while (passing verbose=True to transfer_to_memory() will display a progress
bar). However, subsequent operations on the trajectory will be very fast.

Building trajectories in memory

MemoryReader can also be used to directly generate a trajectory as a numpy array.

In [9]: from MDAnalysisTests.datafiles import PDB

In [10]: from MDAnalysis.coordinates.memory import MemoryReader

In [11]: import numpy as np

In [12]: universe = mda.Universe(PDB)

In [13]: universe.atoms.positions
Out[13]:
array([[52.017, 43.56 , 31.555],

[51.188, 44.112, 31.722],
[51.551, 42.828, 31.039],
...,
[105.342, 74.072, 40.988],
[57.684, 35.324, 14.804],
[62.961, 47.239, 3.753]], dtype=float32)

The load_new() method can be used to load coordinates into a Universe, replacing the old coordinates:

166 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.positions
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/coordinates/memory.html#MDAnalysis.coordinates.memory.MemoryReader
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.transfer_to_memory
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.transfer_to_memory
https://www.mdanalysis.org/docs/documentation_pages/coordinates/memory.html#MDAnalysis.coordinates.memory.MemoryReader
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.load_new

MDAnalysis User Guide

In [14]: coordinates = np.random.rand(len(universe.atoms), 3)

In [15]: universe.load_new(coordinates, format=MemoryReader);

In [16]: universe.atoms.positions
Out[16]:
array([[0.56493425, 0.79520833, 0.21966334],

[0.16930546, 0.71969706, 0.8908428],
[0.10717823, 0.38299218, 0.6345596],
...,
[0.17398858, 0.13097775, 0.1945042],
[0.28091756, 0.921618 , 0.48587748],
[0.50603545, 0.09775481, 0.3029754]], dtype=float32)

or they can be directly passed in when creating a Universe.

In [17]: universe2 = mda.Universe(PDB, coordinates, format=MemoryReader)

In [18]: universe2.atoms.positions
Out[18]:
array([[0.56493425, 0.79520833, 0.21966334],

[0.16930546, 0.71969706, 0.8908428],
[0.10717823, 0.38299218, 0.6345596],
...,
[0.17398858, 0.13097775, 0.1945042],
[0.28091756, 0.921618 , 0.48587748],
[0.50603545, 0.09775481, 0.3029754]], dtype=float32)

In-memory trajectories of an atom selection

Creating a trajectory of an atom selection requires transferring the appropriate units. This is often needed when using
Merge() to create a new Universe, as coordinates are not automatically loaded in.

Output

Frames and trajectories

MDAnalysis Universes can be written out to a number of formats with write(). For example, to write the current
frame as a PDB:

from MDAnalysis.tests.datafiles import PDB, TRR
u = mda.Universe(PDB, TRR)
ag = u.select_atoms("name CA")
ag.write("c-alpha.pdb")

Pass in the frames keyword to write out trajectories.

ag.write('c-alpha_all.xtc', frames='all')

Slice or index the trajectory to choose which frames to write:

ag.write('c-alpha_skip2.trr', frames=u.trajectory[::2])
ag.write('c-alpha_some.dcd', frames=u.trajectory[[0,2,3]])

2.1. Communications 167

https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.write

MDAnalysis User Guide

Alternatively, iterate over the trajectory frame-by-frame with Writer(). This requires you to pass in the number of
atoms to write.

with mda.Writer('c-alpha.xyz', ag.n_atoms) as w:
for ts in u.trajectory:

w.write(ag)

You can pass keyword arguments to some format writers. For example, the LAMMPS DATA format allows the
lengthunit and timeunit keywords to specify the output units.

Pickling

MDAnalysis currently supports pickling of AtomGroups and trajectories that have not been read in as multiple files or
from a PDB file (Issue 1981). Universe cannot be pickled.

In [19]: import pickle

In [20]: from MDAnalysis.tests.datafiles import PSF, DCD

In [21]: psf = mda.Universe(PSF, DCD)

In [22]: pickle.loads(pickle.dumps(psf.trajectory))
Out[22]: <DCDReader /home/docs/checkouts/readthedocs.org/user_builds/mdauserguide/
→˓envs/pr76/lib/python3.7/site-packages/MDAnalysisTests/data/adk_dims.dcd with 98
→˓frames of 3341 atoms>

While trajectories from PDB files cannot be pickled, trajectories where only the topology information comes from a
PDB file can. For example, the universe below loads the trajectory information from a TRR file.

In [23]: u = mda.Universe(PDB, TRR)

In [24]: pickle.loads(pickle.dumps(u.trajectory))
Out[24]: <TRRReader /home/docs/checkouts/readthedocs.org/user_builds/mdauserguide/
→˓envs/pr76/lib/python3.7/site-packages/MDAnalysisTests/data/adk_oplsaa.trr with 10
→˓frames of 47681 atoms>

2.1.15 Format overview

MDAnalysis can read topology or coordinate information from a wide variety of file formats. The emphasis is on
formats used in popular simulation packages. By default, MDAnalysis figures out formats by looking at the extension,
unless the format is explicitly specified with the format or topology_format keywords.

Below is a table of formats in MDAnalysis, and which information can be read from them. A topology file supplies the
list of atoms in the system, their connectivity and possibly additional information such as B-factors, partial charges,
etc. The details depend on the file format and not every topology file provides all (or even any) additional data.

Important: File formats are complicated and not always well defined. MDAnalysis tries to follow published stan-
dards but this can sometimes surprise users. It is highly recommended that you read the page for your data file format
instead of assuming certain behaviour. If you encounter problems with a file format, please get in touch with us.

As a minimum, all topology parsers will provide atom ids, atom types, masses, resids, resnums, and
segids. They will also assign all Atoms to Residues and all Residues to Segments. For systems without residues and
segments, this results in there being a single Residue and Segment to which all Atoms belong. See Topology attributes
for more topology attributes.

168 Chapter 2. Participating

https://github.com/MDAnalysis/mdanalysis/issues/1981\T1\textgreater {}

MDAnalysis User Guide

Often when data is not provided by a file, it will be guessed based on other data in the file. In this scenario, MDAnalysis
will issue a warning. See Guessing for more information.

If a trajectory is loaded without time information, MDAnalysis will set a default timestep of 1.0 ps, where the first
frame starts at 0.0 ps. In order to change these, pass the following optional arguments to Universe:

• dt: the timestep

• time_offset: the starting time from which to calculate the time of each frame

Table 2: Table of all supported formats in MDAnalysis
File type Description Topology Coordinates Read Write
ARC Tinker file X X X
CONFIG DL_Poly CONFIG file X X X
CRD CHARMM CARD file X X X X
CRDBOX AMBER ASCII trajectories X X
DATA LAMMPS data file X X X X
DCD CHARMM, NAMD, or LAMMPS binary trajectory X X X
DMS DESRES Molecular Structure file X X X
ENT Standard PDB file X X X X
GMS GAMESS file X X X
GRO GROMACS structure file X X X X
GSD HOOMD GSD file X X X
HISTORY DL_Poly HISTORY file X X X
INPCRD AMBER restart file X X
LAMMPS a LAMMPS DCD trajectory X X X
LAMMPSDUMP LAMMPS ascii dump file X X X
MDCRD AMBER ASCII trajectories X X
MMTF MMTF file X X X
MOL2 Tripos MOL2 file X X X X
NC AMBER NETCDF format X X
NCDF AMBER NETCDF format X X X
PARM7 AMBER topology file X X
PDB Standard PDB file X X X X
PDBQT PDBQT file X X X X
PQR PQR file X X X X
PRMTOP AMBER topology file X X
PSF CHARMM, NAMD, or XPLOR PSF file X X
RESTRT AMBER restart file X X
TOP AMBER topology file X X
TPR GROMACS run topology file X X
TRJ AMBER ASCII trajectories X X
TRR GROMACS TRR trajectory X X X
TRZ IBIsCO or YASP binary trajectory X X X
TXYZ Tinker file X X X
XML HOOMD XML file X X
XPDB Extended PDB file X X X
XTC GROMACS compressed trajectory X X X
XYZ XYZ file X X X X

2.1. Communications 169

MDAnalysis User Guide

Topology

Table 3: Table of supported topology parsers and the attributes read
Format Description Attributes read Attributes

guessed
CONFIG DL_Poly CONFIG file names masses,

types
CRD CHARMM CARD file names, resnames, tempfactors masses,

types
DATA LAMMPS data file angles, bonds, charges, dihedrals, impropers
DMS DESRES Molecular

Structure file
atomnums, bonds, chainIDs, charges, names,
resnames

types

GMS GAMESS file atomiccharges, names masses,
types

GRO GROMACS structure
file

names, resnames masses,
types

GSD HOOMD GSD file angles, bonds, charges, dihedrals, impropers, names,
radii, resnames

HISTORY DL_Poly HISTORY file names masses,
types

LAMMPS-
DUMP

LAMMPS ascii dump
file

masses

MMTF MMTF file altLocs, bfactors, bonds, charges, icodes, models,
names, occupancies, resnames

masses

MOL2 Tripos MOL2 file bonds, charges, names, resnames masses
PDB, ENT Standard PDB file altLocs, bonds, chainIDs, icodes, names, occupancies,

record_types, resnames, tempfactors
masses,
types

PDBQT PDBQT file altLocs, charges, icodes, names, occupancies,
record_types, resnames, tempfactors

masses

PQR PQR file charges, icodes, names, radii, record_types, resnames masses,
types

PSF CHARMM, NAMD, or
XPLOR PSF file

angles, bonds, charges, dihedrals, impropers, names,
resnames

TOP, PRM-
TOP, PARM7

AMBER topology file angles, bonds, charges, dihedrals, impropers, names,
resnames, type_indices

elements

TPR GROMACS run topol-
ogy file

angles, bonds, charges, dihedrals, impropers, mol-
nums, moltypes, names, resnames

TXYZ, ARC Tinker file bonds, names masses
XML HOOMD XML file angles, bonds, charges, dihedrals, impropers, radii
XPDB Extended PDB file altLocs, bonds, chainIDs, icodes, names, occupancies,

record_types, resnames, tempfactors
masses,
types

XYZ XYZ file names masses,
types

Coordinates

Table 4: Table of supported coordinate readers and the information read
File type Description Velocities Forces
ARC Tinker file

Continued on next page

170 Chapter 2. Participating

MDAnalysis User Guide

Table 4 – continued from previous page
File type Description Velocities Forces
CONFIG DL_Poly CONFIG file X
CRD CHARMM CARD file
CRDBOX AMBER ASCII trajectories
DATA LAMMPS data file X
DCD CHARMM, NAMD, or LAMMPS binary trajectory
DMS DESRES Molecular Structure file X
ENT Standard PDB file
GMS GAMESS file
GRO GROMACS structure file X
GSD HOOMD GSD file
HISTORY DL_Poly HISTORY file X
INPCRD AMBER restart file
LAMMPS a LAMMPS DCD trajectory
LAMMPSDUMP LAMMPS ascii dump file
MDCRD AMBER ASCII trajectories
MMTF MMTF file
MOL2 Tripos MOL2 file
NC AMBER NETCDF format X X
NCDF AMBER NETCDF format X X
PDB Standard PDB file
PDBQT PDBQT file
PQR PQR file
RESTRT AMBER restart file
TRJ AMBER ASCII trajectories
TRR GROMACS TRR trajectory X X
TRZ IBIsCO or YASP binary trajectory X
TXYZ Tinker file
XPDB Extended PDB file
XTC GROMACS compressed trajectory
XYZ XYZ file

2.1.16 Guessing

When a Universe is created from a Universe, MDAnalysis guesses properties that have not been read from the file.
Sometimes these properties are available in the file, but are simply not read by MDAnalysis. For example, masses are
always guessed.

Masses

Atom masses are always guessed for every file format. They are guessed from the Atom.atom_type. This attribute
represents a number of different values in MDAnalysis, depending on which file format you used to create your
Universe. Atom.atom_type can be force-field specific atom types, from files that provide this information; or it
can be an element, guessed from the atom name. See further discussion here.

Important: When an atom mass cannot be guessed from the atom atom_type or name, the atom is assigned a
mass of 0.0. Masses are guessed atom-by-atom, so even if most atoms have been guessed correctly, it is possible that
some have been given masses of 0. It is important to check for non-zero masses before using methods that rely on
them, such as AtomGroup.center_of_mass().

2.1. Communications 171

https://github.com/MDAnalysis/mdanalysis/issues/2348

MDAnalysis User Guide

Types

When atom atom_types are guessed, they represent the atom element. Atom types are always guessed from the
atom name. MDAnalysis follows biological naming conventions, where atoms named “CA” are much more likely to
represent an alpha-carbon than a calcium atom. This guesser is still relatively fragile for non-traditionally biological
atom names.

Bonds, Angles, Dihedrals, Impropers

MDAnalysis can guess if bonds exist between two atoms, based on the distance between them. A bond is created if
the 2 atoms are within

𝑑 < 𝑓 · (𝑅1 +𝑅2)

of each other, where 𝑅1 and 𝑅2 are the VdW radii of the atoms and 𝑓 is an ad-hoc fudge_factor. This is the same
algorithm that VMD uses.

Angles can be guessed from the bond connectivity. MDAnalysis assumes that if atoms 1 & 2 are bonded, and 2 & 3
are bonded, then (1,2,3) must be an angle.

1
\
2 -- 3

Dihedral angles and improper dihedrals can both be guessed from angles. Proper dihedrals are guessed by assuming
that if (1,2,3) is an angle, and 3 & 4 are bonded, then (1,2,3,4) must be a dihedral.

1 4
\ /
2 -- 3

Likewise, if (1,2,3) is an angle, and 2 & 4 are bonded, then (2, 1, 3, 4) must be an improper dihedral (i.e. the improper
dihedral is the angle between the planes formed by (1, 2, 3) and (1, 3, 4))

1
\
2 -- 3

/
4

The method available to users is AtomGroup.guess_bonds, which allows users to pass in a dictionary of van der
Waals’ radii for atom types. This guesses bonds, angles, and dihedrals (but not impropers) for the specified AtomGroup
and adds it to the underlying Universe.

2.1.17 Auxiliary files

Auxiliary readers allow you to read in timeseries data accompanying a trajectory, that is not stored in the regular
trajectory file.

172 Chapter 2. Participating

http://www.ks.uiuc.edu/Research/vmd/vmd-1.9.1/ug/node26.html
http://www.ks.uiuc.edu/Research/vmd/vmd-1.9.1/ug/node26.html
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.guess_bonds

MDAnalysis User Guide

Supported formats

Reader For-
mat

Exten-
sion (if
file)

Remarks

XVGReaderXVG xvg
(default)

Produced by Gromacs during simulation or analysis. Reads full file on
initialisation.

XVGFileReaderXVG-
F

xvg Alternate xvg file reader, reading each step from the file in turn for a
lower memory footprint. XVGReader is the default reader for .xvg
files.

Reading data directly

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import XVG_BZ2 # cobrotoxin protein forces

In [3]: aux = mda.auxiliary.core.auxreader(XVG_BZ2)

In [4]: aux
Out[4]: <MDAnalysis.auxiliary.XVG.XVGReader at 0x7f29589b3d68>

In stand-alone use, an auxiliary reader allows you to iterate over each step in a set of auxiliary data.

In [5]: for step in aux:
...: print(step.data)
...:

[0. 200.71288 -1552.2849 ... 128.4072 1386.0378
-2699.3118]

[50. -1082.6454 -658.32166 ... -493.02954 589.8844
-739.2124]

[100. -246.27269 146.52911 ... 484.32501 2332.3767
-1801.6234]

Use slicing to skip steps.

In [6]: for step in aux[1:2]:
...: print(step.time)
...:

50.0

The auxreader() function uses the get_auxreader_for() to return an appropriate class. This can guess the
format either from a filename, ‘

In [7]: mda.auxiliary.core.get_auxreader_for(XVG_BZ2)
Out[7]: MDAnalysis.auxiliary.XVG.XVGReader

or return the reader for a specified format.

In [8]: mda.auxiliary.core.get_auxreader_for(format='XVG-F')
Out[8]: MDAnalysis.auxiliary.XVG.XVGFileReader

2.1. Communications 173

https://www.mdanalysis.org/docs/documentation_pages/auxiliary/core.html#MDAnalysis.auxiliary.core.auxreader
https://www.mdanalysis.org/docs/documentation_pages/auxiliary/core.html#MDAnalysis.auxiliary.core.get_auxreader_for

MDAnalysis User Guide

Loading data into a Universe

Auxiliary data may be added to a trajectory Reader through the add_auxiliary() method. Auxiliary data may be
passed in as a AuxReader instance, or directly as e.g. a filename, in which case get_auxreader_for() is used
to guess an appropriate reader.

In [9]: from MDAnalysis.tests.datafiles import PDB_xvf, TRR_xvf

In [10]: u = mda.Universe(PDB_xvf, TRR_xvf)

In [11]: u.trajectory.add_auxiliary('protein_force', XVG_BZ2)

In [12]: for ts in u.trajectory:
....: print(ts.aux.protein_force)
....:

[0. 200.71288 -1552.2849 ... 128.4072 1386.0378
-2699.3118]

[50. -1082.6454 -658.32166 ... -493.02954 589.8844
-739.2124]

[100. -246.27269 146.52911 ... 484.32501 2332.3767
-1801.6234]

Passing arguments to auxiliary data

For alignment with trajectory data, auxiliary readers provide methods to assign each auxiliary step to the nearest tra-
jectory timestep, read all steps assigned to a trajectory timestep and calculate ‘representative’ value(s) of the auxiliary
data for that timestep.

To set a timestep or ??

‘Assignment’ of auxiliary steps to trajectory timesteps is determined from the time of the auxiliary step, dt of the
trajectory and time at the first frame of the trajectory. If there are no auxiliary steps assigned to a given timestep (or
none within cutoff, if set), the representative value(s) are set to np.nan.

Iterating over auxiliary data

Auxiliary data may not perfectly line up with the trajectory, or have missing data.

In [13]: from MDAnalysis.tests.datafiles import PDB, TRR

In [14]: u_long = mda.Universe(PDB, TRR)

In [15]: u_long.trajectory.add_auxiliary('protein_force', XVG_BZ2, dt=200)

In [16]: for ts in u_long.trajectory:
....: print(ts.time, ts.aux.protein_force[:4])
....:

0.0 [0. 200.71288 -1552.2849 -967.21124]
100.00000762939453 [100. -246.27269 146.52911 -1084.2484]
200.00001525878906 [nan nan nan nan]
300.0 [nan nan nan nan]
400.0000305175781 [nan nan nan nan]
500.0000305175781 [nan nan nan nan]
600.0 [nan nan nan nan]
700.0000610351562 [nan nan nan nan]

(continues on next page)

174 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.ProtoReader.add_auxiliary
https://www.mdanalysis.org/docs/documentation_pages/auxiliary/core.html#MDAnalysis.auxiliary.core.get_auxreader_for

MDAnalysis User Guide

(continued from previous page)

800.0000610351562 [nan nan nan nan]
900.0000610351562 [nan nan nan nan]

The trajectory ProtoReader methods next_as_aux() and iter_as_aux() allow for movement through
only trajectory timesteps for which auxiliary data is available.

In [17]: for ts in u_long.trajectory.iter_as_aux('protein_force'):
....: print(ts.time, ts.aux.protein_force[:4])
....:

0.0 [0. 200.71288 -1552.2849 -967.21124]
100.00000762939453 [100. -246.27269 146.52911 -1084.2484]

This may be used to avoid representative values set to np.nan, particularly when auxiliary data is less frequent.

Sometimes the auxiliary data is longer than the trajectory.

In [18]: u_short = mda.Universe(PDB)

In [19]: u_short.trajectory.add_auxiliary('protein_force', XVG_BZ2)

In [20]: for ts in u_short.trajectory:
....: print(ts.time, ts.aux.protein_force)
....:

0.0 [0. 200.71288 -1552.2849 ... 128.4072 1386.0378
-2699.3118]

In order to acess auxiliary values at every individual step, including those outside the time range of the trajectory,
iter_auxiliary() allows iteration over the auxiliary independent of the trajectory.

In [21]: for step in u_short.trajectory.iter_auxiliary('protein_force'):
....: print(step.data)
....:

[0. 200.71288 -1552.2849 ... 128.4072 1386.0378
-2699.3118]

[50. -1082.6454 -658.32166 ... -493.02954 589.8844
-739.2124]

[100. -246.27269 146.52911 ... 484.32501 2332.3767
-1801.6234]

To iterate over only a certain section of the auxiliary:

In [22]: for step in u_short.trajectory.iter_auxiliary('protein_force', start=1,
→˓step=2):

....: print(step.time)

....:
50.0

The trajectory remains unchanged, and the auxiliary will be returned to the current timestep after iteration is complete.

Accessing auxiliary attributes

To check the values of attributes of an added auxiliary, use get_aux_attribute().

In [23]: u.trajectory.get_aux_attribute('protein_force', 'dt')
Out[23]: 50.0

2.1. Communications 175

https://www.mdanalysis.org/docs/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.ProtoReader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.ProtoReader.next_as_aux
https://www.mdanalysis.org/docs/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.ProtoReader.iter_as_aux
https://www.mdanalysis.org/docs/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.ProtoReader.iter_auxiliary
https://www.mdanalysis.org/docs/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.ProtoReader.get_aux_attribute

MDAnalysis User Guide

If attributes are settable, they can be changed using set_aux_attribute().

In [24]: u.trajectory.set_aux_attribute('protein_force', 'data_selector', [1])

The auxiliary may be renamed using set_aux_attribute with ‘auxname’, or more directly by using
rename_aux().

In [25]: u.trajectory.ts.aux.protein_force
Out[25]:
array([0. , 200.71288, -1552.2849 , ..., 128.4072 ,

1386.0378 , -2699.3118])

In [26]: u.trajectory.rename_aux('protein_force', 'f')

In [27]: u.trajectory.ts.aux.f
Out[27]:
array([0. , 200.71288, -1552.2849 , ..., 128.4072 ,

1386.0378 , -2699.3118])

Recreating auxiliaries

To recreate an auxiliary, the set of attributes necessary to replicate it can first be obtained with
get_description(). The returned dictionary can then be passed to auxreader() to load a new copy of
the original auxiliary reader.

In [28]: description = aux.get_description()

In [29]: list(description.keys())
Out[29]:
['represent_ts_as',
'cutoff',
'dt',
'initial_time',
'time_selector',
'data_selector',
'constant_dt',
'auxname',
'format',
'auxdata']

In [30]: del aux

In [31]: mda.auxiliary.core.auxreader(**description)
Out[31]: <MDAnalysis.auxiliary.XVG.XVGReader at 0x7f29585c3eb8>

The ‘description’ of any or all the auxiliaries added to a trajectory can be obtained using
get_aux_descriptions().

In [32]: descriptions = u.trajectory.get_aux_descriptions(['f'])

To reload, pass the dictionary into add_auxiliary().

In [1]: u2 = mda.Universe(PDB, TRR)

In [2]: for desc in descriptions:
...: u2.trajectory.add_auxiliary(**desc)
...:

176 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.ProtoReader.set_aux_attribute
https://www.mdanalysis.org/docs/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.ProtoReader.rename_aux
https://www.mdanalysis.org/docs/documentation_pages/auxiliary/base.html#MDAnalysis.auxiliary.base.AuxReader.get_description
https://www.mdanalysis.org/docs/documentation_pages/auxiliary/core.html#MDAnalysis.auxiliary.core.auxreader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.ProtoReader.get_aux_descriptions
https://www.mdanalysis.org/docs/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.ProtoReader.add_auxiliary

MDAnalysis User Guide

2.1.18 Selection exporters

Selection exporters allow you to write a selection of atoms to a file that can be read by another program.

Table 5: Supported selection exporters
Pro-
gram

Exten-
sion

Description Class

CHARMM str CHARMM selection of individual
atoms

MDAnalysis.selections.charmm.
SelectionWriter

Gromacs ndx GROMACS index file MDAnalysis.selections.gromacs.
SelectionWriter

Jmol spt Jmol selection commands MDAnalysis.selections.jmol.
SelectionWriter

PyMol pml PyMOL selection string MDAnalysis.selections.pymol.
SelectionWriter

VMD vmd VMD macros, available in Repre-
sentations

MDAnalysis.selections.vmd.
SelectionWriter

Writing selections

Single AtomGroup

The typical situation is that one has an AtomGroup and wants to work with the same selection of atoms in a different
package, for example, to visualize the atoms in VMD.

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import PDB

In [3]: u = mda.Universe(PDB)

In [4]: ag = u.select_atoms('resname ALA')

As with a normal structure file, use AtomGroup.write method with the appropriate file extension.

ag.write("ala_selection.vmd", name="alanine")

In VMD, sourcing the file ala_selection.vmd (written in Tcl) defines the “macro” alanine that contains the
atom indices to select.

source ala_selection.vmd
set sel [atomselect top alanine]

and in the GUI the macro appears in the Graphics → Representations window in the list Selections: Singlewords as
“alanine”.

Names are not always required; if name is not passed to AtomGroup.write, MDAnalysis defaults to “mdanaly-
sis001”, “mdanalysis002”, and so on.

Multiple selections

AtomGroup.write can take additional keyword arguments, including mode. The default is mode='w', which
will overwrite the provided filename. If mode='a', the selection is appended to the file.

2.1. Communications 177

http://www.charmm.org
https://www.mdanalysis.org/docs/documentation_pages/selections/charmm.html#MDAnalysis.selections.charmm.SelectionWriter
https://www.mdanalysis.org/docs/documentation_pages/selections/charmm.html#MDAnalysis.selections.charmm.SelectionWriter
http://www.gromacs.org
https://www.mdanalysis.org/docs/documentation_pages/selections/gromacs.html#MDAnalysis.selections.gromacs.SelectionWriter
https://www.mdanalysis.org/docs/documentation_pages/selections/gromacs.html#MDAnalysis.selections.gromacs.SelectionWriter
http://wiki.jmol.org/
https://www.mdanalysis.org/docs/documentation_pages/selections/jmol.html#MDAnalysis.selections.jmol.SelectionWriter
https://www.mdanalysis.org/docs/documentation_pages/selections/jmol.html#MDAnalysis.selections.jmol.SelectionWriter
http://www.pymol.org
https://www.mdanalysis.org/docs/documentation_pages/selections/pymol.html#MDAnalysis.selections.pymol.SelectionWriter
https://www.mdanalysis.org/docs/documentation_pages/selections/pymol.html#MDAnalysis.selections.pymol.SelectionWriter
http://www.ks.uiuc.edu/Research/vmd/
https://www.mdanalysis.org/docs/documentation_pages/selections/vmd.html#MDAnalysis.selections.vmd.SelectionWriter
https://www.mdanalysis.org/docs/documentation_pages/selections/vmd.html#MDAnalysis.selections.vmd.SelectionWriter
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
http://www.ks.uiuc.edu/Research/vmd/
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.write
http://www.ks.uiuc.edu/Research/vmd/
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.write
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup.write

MDAnalysis User Guide

u.select_atoms('resname T*').write('residues.ndx',
name='TYR_THR',
mode='a')

u.select_atoms('resname GLY').write('residues.ndx',
name='GLY',
mode='a')

u.select_atoms('resname PRO').write('residues.ndx',
name='PRO',
mode='a')

Looking at this GROMACS index file, we see:

$ gmx make_ndx -n residues.ndx

Command line:
gmx make_ndx -n residues.ndx

Going to read 1 old index file(s)
Counted atom numbers up to 3341 in index file

0 TYR_THR : 301 atoms
1 GLY : 141 atoms
2 PRO : 140 atoms

nr : group '!': not 'name' nr name 'splitch' nr Enter: list groups
'a': atom '&': and 'del' nr 'splitres' nr 'l': list residues
't': atom type '|': or 'keep' nr 'splitat' nr 'h': help
'r': residue 'res' nr 'chain' char
"name": group 'case': case sensitive 'q': save and quit
'ri': residue index

Alternatively, you can direcly use the selection writer itself as a context manager and write each AtomGroup inside
the context. For example:

with mda.selections.gromacs.SelectionWriter('residues.ndx', mode='w') as ndx:
ndx.write(u.select_atoms('resname T*'),

name='TYR_THR')
ndx.write(u.select_atoms('resname GLY'),

name='GLY')

And again, you can append to the file with mode='a':

with mda.selections.gromacs.SelectionWriter('residues.ndx', mode='a') as ndx:
ndx.write(u.select_atoms('resname PRO'),

name='PRO')

Reading in selections

Currently, MDAnalysis doesn’t support reading in atom selections. However, there are other tools that can read files
from other programs, such as GromacsWrapper.

2.1.19 Format reference

178 Chapter 2. Participating

https://docs.python.org/3/reference/datamodel.html#context-managers
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.AtomGroup
https://gromacswrapper.readthedocs.io/en/latest/

MDAnalysis User Guide

CONFIG (DL_Poly Config)

Coordinate reader MDAnalysis.coordinates.DLPoly.ConfigReader
Topology parser MDAnalysis.topology.DLPolyParser.ConfigParser

HISTORY (DL_Poly Config)

Coordinate reader MDAnalysis.coordinates.DLPoly.HistoryReader
Topology parser MDAnalysis.topology.DLPolyParser.HistoryParser

MDAnalysis can read information both from DL Poly config and DL Poly history files. Although DL Poly input file
units can be flexible, output files appear to have the following units:

• Time: ps

• Length: Angstrom

• Mass: amu (Dalton)

• Velocity: Angstrom/ps

• Force: Angstrom Dalton / ps 2

MDAnalysis currently does not convert these into the native kJ/(mol A) force units when reading files in. See Issue
2393 for discussion on units.

CRD (CHARMM CARD files)

Coordinate reader MDAnalysis.coordinates.CRD.CRDReader
Coordinate writer MDAnalysis.coordinates.CRD.CRDWriter
Topology parser MDAnalysis.topology.CRDParser.CRDParser

Reading in

Read a list of atoms from a CHARMM standard or extended CARD coordinate file (CRD) to build a basic topol-
ogy. Reads atom ids (ATOMNO), atom names (TYPES), resids (RESID), residue numbers (RESNO), residue names
(RESNames), segment ids (SEGID) and tempfactor (Weighting). Atom element and mass are guessed based on the
name of the atom.

Writing out

MDAnalysis automatically writes the CHARMM EXT extended format if there are more than 99,999 atoms.

Writing a CRD file format requires the following attributes to be present:

• resids

• resnames

• names

• chainIDs

2.1. Communications 179

https://www.mdanalysis.org/docs/documentation_pages/coordinates/DLPoly.html#MDAnalysis.coordinates.DLPoly.ConfigReader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/DLPoly.html#MDAnalysis.coordinates.DLPoly.HistoryReader
http://www.stfc.ac.uk/SCD/research/app/ccg/software/DL_POLY/44516.aspx
https://github.com/MDAnalysis/mdanalysis/issues/2393
https://github.com/MDAnalysis/mdanalysis/issues/2393
https://www.mdanalysis.org/docs/documentation_pages/coordinates/CRD.html#MDAnalysis.coordinates.CRD.CRDReader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/CRD.html#MDAnalysis.coordinates.CRD.CRDWriter
https://www.mdanalysis.org/docs/documentation_pages/topology/CRDParser.html#MDAnalysis.topology.CRDParser.CRDParser
https://www.charmmtutorial.org/index.php/CHARMM:The_Basics

MDAnalysis User Guide

• tempfactors

If these are not present, then default values are provided and a warning is raised.

DATA (LAMMPS)

Coordinate reader MDAnalysis.coordinates.LAMMPS.DATAReader
Coordinate writer MDAnalysis.coordinates.LAMMPS.DATAWriter
Topology parser MDAnalysis.topology.LAMMPSParser.DATAParser

Important: Lennard-Jones units are not implemented. See Units and constants for other recognized values and the
documentation for the LAMMPS units command.

Reading in

Lammps atoms can have lots of different formats, and even custom formats. By default, MDAnalysis checks:

• “full” : atoms with 7 fields (reading id, resid, type, and charge)

• “molecular”: atoms with 6 fields (reading id, resid, and type)

Users can pass in their own atom_style specifications.

• Required fields: id, type, x, y, z

• Optional fields: resid, charge

For example:

u = mda.Universe(LAMMPSDATA, atom_style="id resid type charge element bfactor
→˓occupancy x y z")

Only id, resid, charge, type, and coordinate information will be read from the file, even if other topology attributes are
specified in the atom_style argument.

Writing out

MDAnalysis supports writing out the header and applicable sections from Atoms, Masses, Velocities, Bonds, Angles,
Dihedrals, and Impropers. The Atoms section is written in the “full” sub-style if charges are available or “molecular”
sub-style if they are not. The molecule id is set to 0 for all atoms.

This writer assumes “conventional” or “real” LAMMPS units where length is measured in Angstroms and velocity is
measured in Angstroms per femtosecond. To write in different units, specify lengthunit or timeunit.

For example, to write a certain frame with nanometer units:

>>> for ts in u.trajectory:
... # analyze frame
... if take_this_frame == True:
... with mda.Writer('frame.data') as W:
... W.write(u.atoms, lengthunit="nm")
... break

180 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/coordinates/LAMMPS.html#MDAnalysis.coordinates.LAMMPS.DATAReader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/LAMMPS.html#MDAnalysis.coordinates.LAMMPS.DATAWriter
https://www.mdanalysis.org/docs/documentation_pages/topology/LAMMPSParser.html#MDAnalysis.topology.LAMMPSParser.DATAParser
http://lammps.sandia.gov/doc/units.html
http://lammps.sandia.gov/doc/atom_style.html

MDAnalysis User Guide

If atom types are not already positive integers, the user must set them to be positive integers, because the writer will
not automatically assign new types.

To preserve numerical atom types when writing a selection, the Masses section will have entries for each atom type up
to the maximum atom type. If the universe does not contain atoms of some type in {1, ... max(atom_types)},
then the mass for that type will be set to 1.

In order to write bonds, each selected bond type must be explicitly set to an integer >= 1.

DCD (CHARMM, NAMD, or LAMMPS trajectory)

Coordinate reader MDAnalysis.coordinates.DCD.DCDReader
Coordinate writer MDAnalysis.coordinates.DCD.DCDWriter

DCD is used by NAMD, CHARMM and LAMMPS as the default trajectory format.

Reading in

Unitcell dimensions

Generally, DCD trajectories produced by any code can be read (with the DCDReader) although there can be issues
with the unitcell dimensions (simulation box). Currently, MDAnalysis tries to guess the correct format for the unitcell
representation but it can be wrong. Check the unitcell dimensions, especially for triclinic unitcells (see Issue 187).

MDAnalysis always uses (*A*, *B*, *C*, *alpha*, *beta*, *gamma*) to represent the unit cell.
Lengths A, B, C are in the MDAnalysis length unit (Å), and angles are in degrees.

The ordering of the angles in the unitcell is the same as in recent versions of VMD’s DCDplugin (2013), namely the
X-PLOR DCD format: The original unitcell is read as [A, gamma, B, beta, alpha, C] from the DCD file.
If any of these values are < 0 or if any of the angles are > 180 degrees then it is assumed it is a new-style CHARMM
unitcell (at least since c36b2) in which box vectors were recorded.

Important: Check your unit cell dimensions carefully, especially when using triclinic boxes. Old CHARMM trajec-
tories might give wrong unitcell values.

Units

The DCD file format is not well defined. In particular, NAMD and CHARMM use it differently. DCD trajectories
produced by CHARMM and NAMD(>2.5) record time in AKMA units. If other units have been recorded (e.g., ps)
then employ the configurable LAMMPS DCD format and set the time unit as an optional argument. You can find a list
of units used in the DCD formats on the MDAnalysis wiki.

Writing out

The writer follows recent NAMD/VMD convention for the unitcell (box lengths in Å and angle-cosines, [A,
cos(gamma), B, cos(beta), cos(alpha), C]). It writes positions in Å and time in AKMA time units.

Reading and writing these trajectories within MDAnalysis will work seamlessly. However, if you process those tra-
jectories with other tools, you need to watch out that time and unitcell dimensions are correctly interpreted.

2.1. Communications 181

https://www.mdanalysis.org/docs/documentation_pages/coordinates/DCD.html#MDAnalysis.coordinates.DCD.DCDReader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/DCD.html#MDAnalysis.coordinates.DCD.DCDWriter
https://www.mdanalysis.org/docs/documentation_pages/coordinates/DCD.html#MDAnalysis.coordinates.DCD.DCDReader
https://github.com/MDAnalysis/mdanalysis/issues/187
http://www.ks.uiuc.edu/Research/vmd/plugins/doxygen/dcdplugin_8c-source.html#l00947
http://www.ks.uiuc.edu/Research/vmd/plugins/molfile/dcdplugin.html
https://github.com/MDAnalysis/mdanalysis/wiki/FileFormats#dcd

MDAnalysis User Guide

DCD (Flexible LAMMPS trajectory)

Coordinate reader MDAnalysis.coordinates.LAMMPS.DCDReader
Coordinate writer MDAnalysis.coordinates.LAMMPS.DCDWriter

LAMMPS can write DCD trajectories but unlike a CHARMM trajectory (which is often called a DCD, even though
CHARMM itself calls them “trj”) the time unit is not fixed to be the AKMA time unit but can depend on settings
in LAMMPS. The most common case for biomolecular simulations appears to be that the time step is recorded in
femtoseconds (command units real in the input file) and lengths in ångströms. Other cases are unit-less Lennard-Jones
time units.

This presents a problem for MDAnalysis, because it cannot autodetect the unit from the file. By default, we assume
that the unit for length is the ångström and the unit for time is the femtosecond. If this is not true, then the user should
supply the appropriate units in the keywords timeunit and/or lengthunit to DCDWriter and Universe
(which then calls DCDReader).

DMS (Desmond Molecular Structure files)

Coordinate reader MDAnalysis.coordinates.DMS.DMSReader
Topology parser MDAnalysis.topology.DMSParser.DMSParser

The DESRES Molecular Structure (DMS) file is an SQLite-format database for storing coordinate and topology infor-
mation. See the Desmond Users Guide (chapter 6 and chapter 17) for more information.

Important: Atom ids

Unlike most other file formats, Desmond starts atom numbers at 0. This means the first atom in a DMS file will have
an Atom.id of 0. However, residues are not necessarily numbered from 0. Residue.resid numbering can start
from 1.

GMS (Gamess trajectory)

Coordinate reader MDAnalysis.coordinates.GMS.GMSReader
Topology parser MDAnalysis.topology.GMSParser.GMSParser

The GMS output format is a common output format for different GAMESS distributions: GAMESS-US, Firefly (PC-
GAMESS) and GAMESS-UK. The current version has been tested with US GAMESS and Firefly only.

Reading in

MDAnalysis can read a GAMESS output file and pull out atom information. Atom names are their elements. Infor-
mation about residues and segments is not read.

182 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/coordinates/LAMMPS.html#MDAnalysis.coordinates.LAMMPS.DCDReader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/LAMMPS.html#MDAnalysis.coordinates.LAMMPS.DCDWriter
http://lammps.sandia.gov/doc/dump.html
http://www.charmm.org/documentation/c36b1/dynamc.html#%20Trajectory
http://www.charmm.org/documentation/c36b1/usage.html#%20AKMA
http://lammps.sandia.gov/doc/units.html
https://www.mdanalysis.org/docs/documentation_pages/coordinates/LAMMPS.html#MDAnalysis.coordinates.LAMMPS.DCDWriter
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/coordinates/LAMMPS.html#MDAnalysis.coordinates.LAMMPS.DCDReader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/DMS.html#MDAnalysis.coordinates.DMS.DMSReader
https://www.mdanalysis.org/docs/documentation_pages/topology/DMSParser.html#MDAnalysis.topology.DMSParser.DMSParser
http://www.deshawresearch.com/Desmond_Users_Guide-0.7.pdf
https://www.mdanalysis.org/docs/documentation_pages/coordinates/GMS.html#MDAnalysis.coordinates.GMS.GMSReader
https://www.mdanalysis.org/docs/documentation_pages/topology/GMSParser.html#MDAnalysis.topology.GMSParser.GMSParser
http://www.msg.ameslab.gov/gamess/
http://classic.chem.msu.su/gran/gamess/index.html
http://www.cfs.dl.ac.uk/

MDAnalysis User Guide

GRO (GROMACS structure file)

Coordinate reader MDAnalysis.coordinates.GRO.GROReader
Coordinate writer MDAnalysis.coordinates.GRO.GROWriter
Topology parser MDAnalysis.topology.GROParser.GROParser

GRO files provide topology, coordinate, and sometimes velocity information.

Reading in

Prior to MDAnalysis version 0.21.0 and GROMACS 2019.5, MDAnalysis failed to parse GRO files with box sizes
where an axis length was longer than 10 characters.

Important: A Universe created with a GRO file and a Universe created with a corresponding TPR file will have
different atom and residue numbering, due to how a TPR file is parsed.

Writing out

AtomGroups can be written out to a GRO file. However, this format does not support multi-frame trajectories.

GSD (HOOMD GSD file)

Coordinate reader MDAnalysis.coordinates.GSD.GSDReader
Topology parser MDAnalysis.topology.GSDParser.GSDParser

The HOOMD schema GSD file format can contain both topology and trajectory information (output of HOOMD-blue).

Reading in

Important: The GSD format was developed to support changing numbers of particles, particle types, particle identi-
ties and topologies. However, MDAnalysis currently does not support changing topologies. Therefore, the MDAnaly-
sis reader should only be used for trajectories that keep the particles and topologies fixed.

A user will only get an error if the number of particles changes from the first time step. MDAnalysis does not currently
check for changes in the particle identity or topology, and it does not update these over the trajectory.

Note: Residue resnames

Unlike other formats, MDAnalysis treats residue resnames from GSD files as integers. These are identical to
resids and resnums.

2.1. Communications 183

https://www.mdanalysis.org/docs/documentation_pages/coordinates/GRO.html#MDAnalysis.coordinates.GRO.GROReader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/GRO.html#MDAnalysis.coordinates.GRO.GROWriter
https://www.mdanalysis.org/docs/documentation_pages/topology/GROParser.html#MDAnalysis.topology.GROParser.GROParser
https://www.mdanalysis.org/docs/documentation_pages/coordinates/GSD.html#MDAnalysis.coordinates.GSD.GSDReader
https://www.mdanalysis.org/docs/documentation_pages/topology/GSDParser.html#MDAnalysis.topology.GSDParser.GSDParser
http://codeblue.umich.edu/hoomd-blue/index.html

MDAnalysis User Guide

INPCRD, RESTRT (AMBER restart files)

Coordinate reader MDAnalysis.coordinates.INPCRD.INPReader

MDAnalysis can read coordinates in Amber coordinate/restart files (suffix “inpcrd”).

ITP (GROMACS portable topology files)

Topology parser MDAnalysis.topology.ITPParser.ITPParser

A ITP file is a portable topology file.

Important: Unlike TPR files, atom ids and residues resids in ITP files are indexed from 1. This means that a
TPR file created from your ITP files will have different numbering in MDAnalysis than the ITP file.

LAMMPSDUMP (LAMMPS ascii dump file)

Coordinate reader MDAnalysis.coordinates.LAMMPS.DumpReader
Topology parser MDAnalysis.topology.LAMMPSParser.LammpsDumpParser

Reading in

MDAnalysis expects ascii dump files to be written with the default LAMMPS dump format of ‘atom’.It will automat-
ically convert positions from their scaled/fractional representation to their real values.

Important: Lennard-Jones units are not implemented. See Units and constants for other recognized values and the
documentation for the LAMMPS units command.

MMTF (Macromolecular Transmission Format)

Coordinate reader MDAnalysis.coordinates.MMTF.MMTFReader
Topology parser MDAnalysis.topology.MMTFParser.MMTFParser

The Macromolecular Transmission Format format (MMTF) should generally be a quicker alternative to PDB.

Individual models within the MMTF file are available via the models attribute of Universe.

MOL2 (Tripos structure)

Coordinate reader MDAnalysis.coordinates.MOL2.MOL2Reader
Coordinate writer MDAnalysis.coordinates.MOL2.MOL2Writer
Topology parser MDAnalysis.topology.MOL2Parser.MOL2Parser

184 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/coordinates/INPCRD.html#MDAnalysis.coordinates.INPCRD.INPReader
https://www.mdanalysis.org/docs/documentation_pages/topology/ITPParser.html#MDAnalysis.topology.ITPParser.ITPParser
http://manual.gromacs.org/current/reference-manual/topologies/topology-file-formats.html#molecule-itp-file
https://www.mdanalysis.org/docs/documentation_pages/topology/LAMMPSParser.html#MDAnalysis.topology.LAMMPSParser.LammpsDumpParser
http://lammps.sandia.gov/doc/dump.html
http://lammps.sandia.gov/doc/units.html
https://www.mdanalysis.org/docs/documentation_pages/coordinates/MMTF.html#MDAnalysis.coordinates.MMTF.MMTFReader
https://www.mdanalysis.org/docs/documentation_pages/topology/MMTFParser.html#MDAnalysis.topology.MMTFParser.MMTFParser
https://mmtf.rcsb.org/
https://www.mdanalysis.org/docs/documentation_pages/coordinates/MOL2.html#MDAnalysis.coordinates.MOL2.MOL2Reader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/MOL2.html#MDAnalysis.coordinates.MOL2.MOL2Writer
https://www.mdanalysis.org/docs/documentation_pages/topology/MOL2Parser.html#MDAnalysis.topology.MOL2Parser.MOL2Parser

MDAnalysis User Guide

The Tripos molecule structure format (MOL2) is a commonly used format. It is used, for instance, by the DOCK
docking code.

Warning: MOL2Writer can only be used to write out previously loaded MOL2 files. For example, if you’re
trying to convert a PDB file to MOL2, you should use other tools such as rdkit.

Here is an example how to use rdkit to convert a PDB to MOL:

from rdkit import Chem
mol = Chem.MolFromPDBFile("molecule.pdb", removeHs=False)
Chem.MolToMolFile(mol, "molecule.mol")

MOL2 specification

• Example file:

Name: benzene
Creating user name: tom
Creation time: Wed Dec 28 00:18:30 1988

Modifying user name: tom
Modification time: Wed Dec 28 00:18:30 1988

@<TRIPOS>MOLECULE
benzene
12 12 1 0 0
SMALL
NO_CHARGES

@<TRIPOS>ATOM
1 C1 1.207 2.091 0.000 C.ar 1 BENZENE 0.000
2 C2 2.414 1.394 0.000 C.ar 1 BENZENE 0.000
3 C3 2.414 0.000 0.000 C.ar 1 BENZENE 0.000
4 C4 1.207 -0.697 0.000 C.ar 1 BENZENE 0.000
5 C5 0.000 0.000 0.000 C.ar 1 BENZENE 0.000
6 C6 0.000 1.394 0.000 C.ar 1 BENZENE 0.000
7 H1 1.207 3.175 0.000 H 1 BENZENE 0.000
8 H2 3.353 1.936 0.000 H 1 BENZENE 0.000
9 H3 3.353 -0.542 0.000 H 1 BENZENE 0.000
10 H4 1.207 -1.781 0.000 H 1 BENZENE 0.000
11 H5 -0.939 -0.542 0.000 H 1 BENZENE 0.000
12 H6 -0.939 1.936 0.000 H 1 BENZENE 0.000
@<TRIPOS>BOND
1 1 2 ar
2 1 6 ar
3 2 3 ar
4 3 4 ar
5 4 5 ar
6 5 6 ar
7 1 7 1
8 2 8 1
9 3 9 1
10 4 10 1
11 5 11 1

(continues on next page)

2.1. Communications 185

http://www.tripos.com/
http://chemyang.ccnu.edu.cn/ccb/server/AIMMS/mol2.pdf
http://dock.compbio.ucsf.edu/
https://www.mdanalysis.org/docs/documentation_pages/coordinates/MOL2.html#MDAnalysis.coordinates.MOL2.MOL2Writer
http://www.rdkit.org/docs/GettingStartedInPython.html
http://www.rdkit.org/docs/GettingStartedInPython.html

MDAnalysis User Guide

(continued from previous page)

12 6 12 1
@<TRIPOS>SUBSTRUCTURE
1 BENZENE 1 PERM 0 **** **** 0 ROOT

NCDF, NC (AMBER NetCDF trajectory)

Coordinate reader MDAnalysis.coordinates.TRJ.NCDFReader
Coordinate writer MDAnalysis.coordinates.TRJ.NCDFWriter

AMBER binary trajectories are automatically recognised by the file extension “.ncdf”. The NCDF module uses
scipy.io.netcdf and therefore scipy must be installed.

Reading in

Units are assumed to be the following default AMBER units:

• length: Angstrom

• time: ps

Currently, if other units are detected, MDAnalysis will raise a NotImplementedError.

Writing out

NCDF files are always written out in ångström and picoseconds.

Although scale_factors can be read from NCDF files, they are not kept or used when writing NCDF files out.

Writing with the netCDF4 module and potential issues

Although scipy.io.netcdf is very fast at reading NetCDF files, it is slow at writing them out. The
netCDF4 package is fast at writing (but slow at reading). This requires the compiled netcdf library to be
installed. MDAnalysis tries to use netCDF4 for writing if it is available, but will fall back to scipy.
io.netcdf if it is not.

AMBER users might have a hard time getting netCDF4 to work with a conda-based installation (as
discussed in Issue #506) because of the way that AMBER itself handles netcdf. In this scenario, MD-
Analysis will simply switch to the scipy package. If you encounter this error and wish to use the the faster
netCDF4 writer, the only solution is to unload the AMBER environment.

PDB, ENT (Standard PDB file)

Coordinate reader MDAnalysis.coordinates.PDB.PDBReader
Coordinate writer MDAnalysis.coordinates.PDB.PDBWriter
Topology parser MDAnalysis.topology.PDBParser.PDBParser

186 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/coordinates/TRJ.html#MDAnalysis.coordinates.TRJ.NCDFReader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/TRJ.html#MDAnalysis.coordinates.TRJ.NCDFWriter
https://ambermd.org/FileFormats.php#netcdf
https://docs.python.org/3/library/exceptions.html#NotImplementedError
https://unidata.github.io/netcdf4-python/
https://github.com/MDAnalysis/mdanalysis/issues/506#issuecomment-225081416
https://www.mdanalysis.org/docs/documentation_pages/coordinates/PDB.html#MDAnalysis.coordinates.PDB.PDBReader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/PDB.html#MDAnalysis.coordinates.PDB.PDBWriter
https://www.mdanalysis.org/docs/documentation_pages/topology/PDBParser.html#MDAnalysis.topology.PDBParser.PDBParser

MDAnalysis User Guide

Reading in

MDAnalysis parses the following PDB records (see PDB coordinate section for details):

• CRYST1 for unit cell dimensions A,B,C, alpha,beta,gamma

• ATOM or HETATM for serial, name, resName, chainID, resSeq, x, y, z, occupancy, tempFactor, segID

• CONECT records for bonds

• HEADER (Universe.trajectory.header)

• TITLE (Universe.trajectory.title)

• COMPND (Universe.trajectory.compound)

• REMARK (Universe.trajectory.remarks)

All other lines are ignored. Multi-MODEL PDB files are read as trajectories with a default timestep of 1 ps (pass in
the dt argument to change this). Currently, MDAnalysis cannot read multi-model PDB files written by VMD, as VMD
uses the keyword “END” to separate models instead of “MODEL”/”ENDMDL” keywords.

Important: MDAnalysis does not read atom elements or charges from a PDB file, even when they are provided.
Instead, elements are guessed from atom names.

MDAnalysis attempts to read segid attributes from the segID column. If this column does not contain information,
segments are instead created from chainIDs. If chainIDs are also not present, then segids are set to the default
'SYSTEM' value.

Writing out

MDAnalysis can write both single-frame PDBs and convert trajectories to multi-model PDBs. If the Universe is
missing fields that are required in a PDB file, MDAnalysis provides default values and raises a warning. There are 2
exceptions to this:

• chainIDs: if a Universe does not have chainIDs, MDAnalysis uses the first character of the segment
segid instead.

• elements: Elements are always guessed from the atom name.

These are the default values:

• names: ‘X’

• altLocs: ‘’

• resnames: ‘UNK’

• icodes: ‘’

• segids: ‘’

• resids: 1

• occupancies: 1.0

• tempfactors: 0.0

2.1. Communications 187

http://www.wwpdb.org/documentation/file-format-content/format32/sect9.html
http://www.wwpdb.org/documentation/file-format-content/format32/sect9.html#MODEL
https://github.com/MDAnalysis/mdanalysis/issues/1133

MDAnalysis User Guide

PDB specification

Table 6: CRYST1 fields
COLUMNS DATA TYPE FIELD DEFINITION
1 - 6 Record name “CRYST1”
7 - 15 Real(9.3) a a (Angstroms).
16 - 24 Real(9.3) b b (Angstroms).
25 - 33 Real(9.3) c c (Angstroms).
34 - 40 Real(7.2) alpha alpha (degrees).
41 - 47 Real(7.2) beta beta (degrees).
48 - 54 Real(7.2) gamma gamma (degrees).

Table 7: ATOM/HETATM fields
COLUMNS DATA TYPE FIELD DEFINITION
1 - 6 Record name “ATOM “
7 - 11 Integer serial Atom serial number.
13 - 16 Atom name Atom name.
17 Character altLoc Alternate location indicator.
18 - 21 Residue name resName Residue name.
22 Character chainID Chain identifier.
23 - 26 Integer resSeq Residue sequence number.
27 AChar iCode Code for insertion of residues.
31 - 38 Real(8.3) x Orthogonal coordinates for X in Angstroms.
39 - 46 Real(8.3) y Orthogonal coordinates for Y in Angstroms.
47 - 54 Real(8.3) z Orthogonal coordinates for Z in Angstroms.
55 - 60 Real(6.2) occupancy Occupancy.
61 - 66 Real(6.2) tempFactor Temperature factor.
67 - 76 String segID (unofficial CHARMM extension ?)
77 - 78 LString(2) element Element symbol, right-justified.
79 - 80 LString(2) charge Charge on the atom.

PDBQT (Autodock structure)

Coordinate reader MDAnalysis.coordinates.PDBQT.PDBQTReader
Coordinate writer MDAnalysis.coordinates.PDBQT.PDBQTWriter
Topology parser MDAnalysis.topology.PDBQTParser.PDBQTParser

Reading in

MDAnalysis reads coordinates from PDBQT files and additional optional data such as B-factors, partial charge and
AutoDock atom types. It is also possible to substitute a PDBQT file for a PSF file in order to define the list of atoms
(but no connectivity information will be available in this case).

Although PDBQT is a similar file format to PDB, MDAnalysis treats them with several differences:

• Multi-model PDBQT files are not supported

• Connectivity is not supported (i.e. bonds are not read)

188 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/coordinates/PDBQT.html#MDAnalysis.coordinates.PDBQT.PDBQTReader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/PDBQT.html#MDAnalysis.coordinates.PDBQT.PDBQTWriter
https://www.mdanalysis.org/docs/documentation_pages/topology/PDBQTParser.html#MDAnalysis.topology.PDBQTParser.PDBQTParser
http://autodock.scripps.edu/faqs-help/faq/what-is-the-format-of-a-pdbqt-file
http://autodock.scripps.edu/

MDAnalysis User Guide

Writing out

MDAnalysis implements a subset of the PDB 3.2 standard and the PDBQT spec. Unlike the PDB, ENT (Standard
PDB file) writer, MDAnalysis cannot write multi-frame trajectories to a PDBQT file.

If the Universe is missing fields that are required in a PDBQT file, MDAnalysis provides default values and raises a
warning. There are 2 exceptions to this:

• chainIDs: if a Universe does not have chainIDs, MDAnalysis uses the first character of the segment
segid instead.

• elements: MDAnalysis uses the atom type as the element.

These are the default values:

• names: ‘X’

• altLocs: ‘’

• resnames: ‘UNK’

• icodes: ‘’

• segids: ‘’

• resids: 1

• occupancies: 1.0

• tempfactors: 0.0

• types (elements): ‘’

• charges: 0.0

PDBQT specification

Records read:

• CRYST1 for unit cell dimensions A,B,C, alpha,beta,gamma

• ATOM or HETATM for serial, name, resName, chainID, resSeq, x, y, z, occupancy, tempFactor, segID

2.1. Communications 189

http://www.wwpdb.org/documentation/file-format-content/format32/v3.2.html
http://autodock.scripps.edu/faqs-help/faq/what-is-the-format-of-a-pdbqt-file

MDAnalysis User Guide

Table 8: Original PDB format documentation with AutoDOCK exten-
sions

COLUMNS DATA TYPE FIELD DEFINITION
1 - 6 Record name “CRYST1”
7 - 15 Real(9.3) a a (Angstroms).
16 - 24 Real(9.3) b b (Angstroms).
25 - 33 Real(9.3) c c (Angstroms).
34 - 40 Real(7.2) alpha alpha (degrees).
41 - 47 Real(7.2) beta beta (degrees).
48 - 54 Real(7.2) gamma gamma (degrees).
1 - 6 Record name “ATOM “
7 - 11 Integer serial Atom serial number.
13 - 16 Atom name Atom name.
17 Character altLoc Alternate location indicator. IGNORED
18 - 21 Residue name resName Residue name.
22 Character chainID Chain identifier.
23 - 26 Integer resSeq Residue sequence number.
27 AChar iCode Code for insertion of residues. IGNORED
31 - 38 Real(8.3) x Orthogonal coordinates for X in Angstroms.
39 - 46 Real(8.3) y Orthogonal coordinates for Y in Angstroms.
47 - 54 Real(8.3) z Orthogonal coordinates for Z in Angstroms.
55 - 60 Real(6.2) occupancy Occupancy.
61 - 66 Real(6.2) tempFactor Temperature factor.
67 - 76 Real(10.4) partialChrg Gasteiger PEOE partial charge q.
79 - 80 LString(2) atomType AutoDOCK atom type t.

We ignore torsion notation and just pull the partial charge and atom type columns:

COMPND NSC7810
REMARK 3 active torsions:
REMARK status: ('A' for Active; 'I' for Inactive)
REMARK 1 A between atoms: A7_7 and C22_23
REMARK 2 A between atoms: A9_9 and A11_11
REMARK 3 A between atoms: A17_17 and C21_21
ROOT
123456789.123456789.123456789.123456789.123456789.123456789.123456789.123456789.
→˓(column reference)
ATOM 1 A1 INH I 1.054 3.021 1.101 0.00 0.00 0.002 A
ATOM 2 A2 INH I 1.150 1.704 0.764 0.00 0.00 0.012 A
ATOM 3 A3 INH I -0.006 0.975 0.431 0.00 0.00 -0.024 A
ATOM 4 A4 INH I 0.070 -0.385 0.081 0.00 0.00 0.012 A
ATOM 5 A5 INH I -1.062 -1.073 -0.238 0.00 0.00 0.002 A
ATOM 6 A6 INH I -2.306 -0.456 -0.226 0.00 0.00 0.019 A
ATOM 7 A7 INH I -2.426 0.885 0.114 0.00 0.00 0.052 A
ATOM 8 A8 INH I -1.265 1.621 0.449 0.00 0.00 0.002 A
ATOM 9 A9 INH I -1.339 2.986 0.801 0.00 0.00 -0.013 A
ATOM 10 A10 INH I -0.176 3.667 1.128 0.00 0.00 0.013 A
ENDROOT
BRANCH 9 11
ATOM 11 A11 INH I -2.644 3.682 0.827 0.00 0.00 -0.013 A
ATOM 12 A16 INH I -3.007 4.557 -0.220 0.00 0.00 0.002 A
ATOM 13 A12 INH I -3.522 3.485 1.882 0.00 0.00 0.013 A
ATOM 14 A15 INH I -4.262 5.209 -0.177 0.00 0.00 -0.024 A
ATOM 15 A17 INH I -2.144 4.784 -1.319 0.00 0.00 0.052 A

(continues on next page)

190 Chapter 2. Participating

MDAnalysis User Guide

(continued from previous page)

ATOM 16 A14 INH I -5.122 4.981 0.910 0.00 0.00 0.012 A
ATOM 17 A20 INH I -4.627 6.077 -1.222 0.00 0.00 0.012 A
ATOM 18 A13 INH I -4.749 4.135 1.912 0.00 0.00 0.002 A
ATOM 19 A19 INH I -3.777 6.285 -2.267 0.00 0.00 0.002 A
ATOM 20 A18 INH I -2.543 5.650 -2.328 0.00 0.00 0.019 A
BRANCH 15 21
ATOM 21 C21 INH I -0.834 4.113 -1.388 0.00 0.00 0.210 C
ATOM 22 O1 INH I -0.774 2.915 -1.581 0.00 0.00 -0.644 OA
ATOM 23 O3 INH I 0.298 4.828 -1.237 0.00 0.00 -0.644 OA
ENDBRANCH 15 21
ENDBRANCH 9 11
BRANCH 7 24
ATOM 24 C22 INH I -3.749 1.535 0.125 0.00 0.00 0.210 C
ATOM 25 O2 INH I -4.019 2.378 -0.708 0.00 0.00 -0.644 OA
ATOM 26 O4 INH I -4.659 1.196 1.059 0.00 0.00 -0.644 OA
ENDBRANCH 7 24
TORSDOF 3
123456789.123456789.123456789.123456789.123456789.123456789.123456789.123456789.
→˓(column reference)

PQR file (PDB2PQR / APBS)

Coordinate reader MDAnalysis.coordinates.PQR.PQRReader
Coordinate writer MDAnalysis.coordinates.PQR.PQRWriter
Topology parser MDAnalysis.topology.PQRParser.PQRParser

MDAnalysis can read classes from a PQR file (as written by PDB2PQR). Parsing is adopted from the description of
the PQR format as used by APBS.

Warning: Fields must be white-space separated or data are read incorrectly. PDB formatted files are not guaran-
teed to be white-space separated so extra care should be taken when quickly converting PDB files into PQR files
using simple scripts.

For example, PQR files created with PDB2PQR and the –whitespace option are guaranteed to conform to the above
format:

pdb2pqr --ff=charmm --whitespace 4ake.pdb 4ake.pqr

Reading in

MDAnalysis reads data on a per-line basis from PQR files using the following format:

recordName serial atomName residueName chainID residueNumber X Y Z charge radius

If this fails it is assumed that the chainID was omitted and the shorter format is read:

recordName serial atomName residueName residueNumber X Y Z charge radius

Anything else will raise a ValueError.

2.1. Communications 191

https://www.mdanalysis.org/docs/documentation_pages/coordinates/PQR.html#MDAnalysis.coordinates.PQR.PQRReader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/PQR.html#MDAnalysis.coordinates.PQR.PQRWriter
https://www.mdanalysis.org/docs/documentation_pages/topology/PQRParser.html#MDAnalysis.topology.PQRParser.PQRParser
https://apbs-pdb2pqr.readthedocs.io/en/latest/formats/pqr.html
https://apbs-pdb2pqr.readthedocs.io/en/latest/pdb2pqr/index.html
https://apbs-pdb2pqr.readthedocs.io/en/latest/formats/pqr.html
https://apbs-pdb2pqr.readthedocs.io/en/latest/apbs/index.html
https://apbs-pdb2pqr.readthedocs.io/en/latest/pdb2pqr/index.html
https://docs.python.org/3/library/exceptions.html#ValueError

MDAnalysis User Guide

The whitespace is the most important feature of this format: fields must be separated by at least one space or tab
character.

Writing out

Charges (“Q”) are taken from the MDAnalysis.core.groups.Atom.charge attribute while radii are obtained
from the MDAnalysis.core.groups.Atom.radius attribute.

• If the segid is ‘SYSTEM’ then it will be set to the empty string. Otherwise the first letter will be used as the
chain ID.

• The serial number always starts at 1 and increments sequentially for the atoms.

The output format is similar to pdb2pqr --whitespace.

Output should look like this (although the only real requirement is whitespace separation between all entries). The
chainID is optional and can be omitted:

ATOM 1 N MET 1 -11.921 26.307 10.410 -0.3000 1.8500
ATOM 36 NH1 ARG 2 -6.545 25.499 3.854 -0.8000 1.8500
ATOM 37 HH11 ARG 2 -6.042 25.480 4.723 0.4600 0.2245

PQR specification

The PQR fields read are:

recordName A string which specifies the type of PQR entry and should either be ATOM or HETATM.

serial An integer which provides the atom index (but note that MDAnalysis renumbers atoms so one cannot rely on
the serial)

atomName A string which provides the atom name.

residueName A string which provides the residue name.

chainID An optional string which provides the chain ID of the atom.

residueNumber An integer which provides the residue index.

X Y Z Three floats which provide the atomic coordiantes.

charge A float which provides the atomic charge (in electrons).

radius A float which provides the atomic radius (in Å).

Clearly, this format can deviate wildly from PDB due to the use of whitespaces rather than specific column widths and
alignments. This deviation can be particularly significant when large coordinate values are used.

PSF (CHARMM, NAMD, or XPLOR protein structure file)

Topology parser MDAnalysis.topology.PSFParser.PSFParser

A protein structure file (PSF) contains topology information for CHARMM, NAMD, and XPLOR. The MDAnalysis
PSFParser only reads information about atoms, bonds, angles, dihedrals, and impropers. While PSF files can include
information on hydrogen-bond donor and acceptor groups, MDAnalysis does not read these in.

Important: Atom ids

192 Chapter 2. Participating

http://www.wwpdb.org/documentation/file-format
https://www.mdanalysis.org/docs/documentation_pages/topology/PSFParser.html#MDAnalysis.topology.PSFParser.PSFParser
https://www.ks.uiuc.edu/Training/Tutorials/namd/namd-tutorial-unix-html/node23.html

MDAnalysis User Guide

Although PSF files index atoms from 1 in the file, the MDAnalysis PSFParser subtracts 1 to create atom ids. This
means that if your atom is numbered 3 in your PSF file, it will have an Atom.id of 2 in MDAnalysis.

Atom indices are MDAnalysis derived and always index from 0, no matter the file type.

Reading in

PSF files can come in a number of “flavours”: STANDARD, EXTENDED, and NAMD. If your file is not a standard
file, it must have a NAMD or EXT flag to tell MDAnalysis to how to parse the atom section.

As a NAMD file is space-separated, files with missing columns can cause MDAnalysis to read information incorrectly.
This can cause issues for PSF files written from VMD.

PSF files can encode insertion codes. However, MDAnalysis does not currently support reading PSF files with insertion
codes.

PSF specification

CHARMM

Normal (standard) and extended (EXT) PSF format are supported. CHEQ is supported in the sense that CHEQ data is
simply ignored.

CHARMM Format from source/psffres.src:

CHEQ:

II,LSEGID,LRESID,LRES,TYPE(I),IAC(I),CG(I),AMASS(I),IMOVE(I),ECH(I),EHA(I)

standard format:
(I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,I4,1X,2G14.6,I8,2G14.6)
(I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,A4,1X,2G14.6,I8,2G14.6) XPLOR
expanded format EXT:
(I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,I4,1X,2G14.6,I8,2G14.6)
(I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,A4,1X,2G14.6,I8,2G14.6) XPLOR

no CHEQ:

II,LSEGID,LRESID,LRES,TYPE(I),IAC(I),CG(I),AMASS(I),IMOVE(I)

standard format:
(I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,I4,1X,2G14.6,I8)
(I8,1X,A4,1X,A4,1X,A4,1X,A4,1X,A4,1X,2G14.6,I8) XPLOR
expanded format EXT:
(I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,I4,1X,2G14.6,I8)
(I10,1X,A8,1X,A8,1X,A8,1X,A8,1X,A4,1X,2G14.6,I8) XPLOR

NAMD

This format is space separated (see the release notes for VMD 1.9.1, psfplugin).

TOP, PRMTOP, PARM7 (AMBER topology)

Topology parser MDAnalysis.topology.TOPParser.TOPParser

2.1. Communications 193

https://github.com/MDAnalysis/mdanalysis/issues/2061
https://github.com/MDAnalysis/mdanalysis/issues/2053
https://github.com/MDAnalysis/mdanalysis/issues/2053
http://www.ks.uiuc.edu/Research/vmd/current/devel.html
https://www.mdanalysis.org/docs/documentation_pages/topology/TOPParser.html#MDAnalysis.topology.TOPParser.TOPParser

MDAnalysis User Guide

AMBER specification

Note: The Amber charge is converted to electron charges as used in MDAnalysis and other packages. To get back
Amber charges, multiply by 18.2223.

Table 9: Attributes parsed from AMBER keywords
AMBER flag MDAnalysis attribute
ATOM_NAME names
CHARGE charges
ATOMIC_NUMBER elements
MASS masses
BONDS_INC_HYDROGEN BONDS_WITHOUT_HYDROGEN bonds
ANGLES_INC_HYDROGEN ANGLES_WITHOUT_HYDROGEN angles
DIHEDRALS_INC_HYDROGEN DIHEDRALS_WITHOUT_HYDROGEN dihedrals / improper
ATOM_TYPE_INDEX type_indices
AMBER_ATOM_TYPE types
RESIDUE_LABEL resnames
RESIDUE_POINTER residues

Developer notes

The format is defined in PARM parameter/topology file specification. The reader tries to detect if it is a newer (AM-
BER 12?) file format by looking for the flag “ATOMIC_NUMBER”.

TPR (GROMACS run topology files)

Topology parser MDAnalysis.topology.TPRParser.TPRParser

A GROMACS TPR file is a portable binary run input file. It contains both topology and coordinate information.
However, MDAnalysis currently only reads topology information about atoms, bonds, dihedrals, and impropers; it
does not read the coordinate information.

Important: Atom ids, residue resids, and molnums

GROMACS indexes atom numbers and residue numbers from 1 in user-readable files. However, the MDAnalysis
TPRParser creates atom ids and residue resids from 0. This means that if your atom is numbered 3 in your GRO,
ITP, or TOP file, it will have an Atom.id of 2 in MDAnalysis. Likewise, if your residue ALA has a residue number
of 4 in your GRO file, it will have a Residue.resid number of 3 in MDAnalysis. Finally, molecules are also
numbered from 0, in the attribute molnums.

Atom indices and residue resindices are MDAnalysis derived and always index from 0, no matter the file type.

194 Chapter 2. Participating

http://ambermd.org/formats.html#topology
https://www.mdanalysis.org/docs/documentation_pages/topology/TPRParser.html#MDAnalysis.topology.TPRParser.TPRParser

MDAnalysis User Guide

Supported versions

Table 10: TPR format versions and generations read by MDAnalysis.
topology.TPRParser.parse().

TPX format TPX generation Gromacs release read
?? ?? 3.3, 3.3.1 no
58 17 4.0, 4.0.2, 4.0.3, 4.0.4, 4.0.5, 4.0.6, 4.0.7 yes
73 23 4.5.0, 4.5.1, 4.5.2, 4.5.3, 4.5.4, 4.5.5 yes
83 24 4.6, 4.6.1 yes
100 26 5.0, 5.0.1, 5.0.2, 5.0.3,5.0.4, 5.0.5 yes
103 26 5.1 yes
110 26 2016 yes
112 26 2018 yes
116 26 2019 yes

For further discussion and notes see Issue 2. Please open a new issue in the Issue Tracker when a new or different TPR
file format version should be supported.

TPR specification

The TPR reader is a pure-python implementation of a basic TPR parser. Currently the following sections of the
topology are parsed:

• Atoms: number, name, type, resname, resid, segid, mass, charge, [residue, segment, radius, bfactor, resnum,
moltype]

• Bonds

• Angles

• Dihedrals

• Impropers

Bonded interactions available in Gromacs are described in the Gromacs manual. The following ones are used to build
the topology (see Issue 463):

Table 11: GROMACS entries used to create bonds.
Directive Type Description
bonds 1 regular bond
bonds 2 G96 bond
bonds 3 Morse bond
bonds 4 cubic bond
bonds 5 connections
bonds 6 harmonic potentials
bonds 7 FENE bonds
bonds 8 tabulated potential with exclusion/connection
bonds 9 tabulated potential without exclusion/connection
bonds 10 restraint potentials
constraints 1 constraints with exclusion/connection
constraints 2 constraints without exclusion/connection
settles 1 SETTLE constraints

2.1. Communications 195

https://github.com/MDAnalysis/mdanalysis/issues/2
https://github.com/MDAnalysis/mdanalysis/issues
http://manual.gromacs.org/current/reference-manual/index.html
https://github.com/MDAnalysis/mdanalysis/pull/463
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#harmonic-potential
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#fourth-power-potential
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#morse-potential-bond-stretching
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#cubic-bond-stretching-potential
http://manual.gromacs.org/current/reference-manual/topologies/molecule-definition.html#exclusions
http://manual.gromacs.org/current/reference-manual/functions/restraints.html#distance-restraints
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#fene-bond-stretching-potential
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#tabulated-bonded-interaction-functions
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#tabulated-bonded-interaction-functions
http://manual.gromacs.org/current/reference-manual/functions/restraints.html#distance-restraints
http://manual.gromacs.org/current/reference-manual/functions/free-energy-interactions.html#constraints
http://manual.gromacs.org/current/reference-manual/functions/free-energy-interactions.html#constraints
http://manual.gromacs.org/current/reference-manual/algorithms/constraint-algorithms.html#settle

MDAnalysis User Guide

Table 12: GROMACS entries used to create angles.
Directive Type Description
angles 1 regular angle
angles 2 G96 angle
angles 3 Bond-bond cross term
angles 4 Bond-angle cross term
angles 5 Urey-Bradley
angles 6 Quartic angles
angles 8 Tabulated angles
angles 10 restricted bending potential

Table 13: GROMACS entries used to create dihedrals.
Directive Type Description
dihedrals 1 proper dihedral
dihedrals 3 Ryckaert-Bellemans dihedral
dihedrals 5 Fourier dihedral
dihedrals 8 Tabulated dihedral
dihedrals 9 Periodic proper dihedral
dihedrals 10 Restricted dihedral
dihedrals 11 Combined bending-torsion potential

Table 14: GROMACS entries used to create improper dihedrals.
Directive Type Description
dihedrals 2 improper dihedral
dihedrals 4 periodic improper dihedral

Developer notes

This tpr parser is written according to the following files

• gromacs_dir/src/kernel/gmxdump.c

• gromacs_dir/src/gmxlib/tpxio.c (the most important one)

• gromacs_dir/src/gmxlib/gmxfio_rw.c

• gromacs_dir/src/gmxlib/gmxfio_xdr.c

• gromacs_dir/include/gmxfiofio.h

or their equivalent in more recent versions of Gromacs.

The function read_tpxheader() is based on the TPRReaderDevelopment notes. Functions with names starting
with read_ or do_ are trying to be similar to those in gmxdump.c or tpxio.c, those with extract_ are new.

Wherever fver_err(fver) is used, it means the tpx version problem has not been solved. Versions prior to
Gromacs 4.0.x are not supported.

TRJ, MDCRD, CRDBOX (AMBER ASCII trajectory)

Coordinate reader MDAnalysis.coordinates.TRJ.TRJReader

196 Chapter 2. Participating

http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#harmonic-angle-potential
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#cosine-based-angle-potential
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#bond-bond-cross-term
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#bond-angle-cross-term
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#urey-bradley-potential
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#quartic-angle-potential
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#tabulated-bonded-interaction-functions
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#restricted-bending-potential
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#proper-dihedrals
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#proper-dihedrals-ryckaert-bellemans-function
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#proper-dihedrals-fourier-function
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#tabulated-bonded-interaction-functions
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#proper-dihedrals-periodic-type
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#proper-dihedrals-restricted-torsion-potential
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#proper-dihedrals-combined-bending-torsion-potential
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#improper-dihedrals-harmonic-type
http://manual.gromacs.org/current/reference-manual/functions/bonded-interactions.html#improper-dihedrals-periodic-type
https://github.com/MDAnalysis/mdanalysis/wiki/TPRReaderDevelopment
https://www.mdanalysis.org/docs/documentation_pages/coordinates/TRJ.html#MDAnalysis.coordinates.TRJ.TRJReader

MDAnalysis User Guide

MDAnalysis supports reading of AMBER ASCII trajectories (“traj”) and binary trajectories (“netcdf”).

Important: In the AMBER community, these trajectories are often saved with the suffix ‘.crd’. This extension
conflicts with the CHARMM CRD format and MDAnalysis will not correctly autodetect AMBER “.crd” trajectories.
Instead, explicitly provide the format="TRJ" argument to Universe:

u = MDAnalysis.Universe("top.prmtop", "traj.crd", format="TRJ")

Reading in

Units are assumed to be the following default AMBER units:

• length: Angstrom

• time: ps

Limitations

• Periodic boxes are only stored as box lengths A, B, C in an AMBER

trajectory; the reader always assumes that these are orthorhombic boxes. * The trajectory does not contain time
information so we simply set the time step to 1 ps (or the user could provide it with the dt argument) * Trajectories
with fewer than 4 atoms probably fail to be read (BUG). * If the trajectory contains exactly one atom then it is always
assumed to be non-periodic (for technical reasons). * Velocities are currently not supported as ASCII trajectories.

TRR (GROMACS lossless trajectory file)

Coordinate reader MDAnalysis.coordinates.TRR.TRRReader
Coordinate writer MDAnalysis.coordinates.TRR.TRRWriter

The GROMACS TRR trajectory is a lossless format. This file format can store coordinates, velocities, and forces.

Important: MDAnalysis currently treats trajectories with damaged frames by truncating them at the frame before.
Check that you are loading a valid file with gmx check.

Reading in

MDAnalysis uses XDR based readers for GROMACS formats, which store offsets on the disk. The offsets are used to
enable access to random frames efficiently. These offsets will be generated automatically the first time the trajectory
is opened, and offsets are generally stored in hidden *_offsets.npz files.1

Trajectories split across multiple files can be read continuously into MDAnalysis with continuous=True, in the
style of gmx trjcat.

1 Occasionally, MDAnalysis fails to read XDR offsets, resulting in an error. The workaround for this is to create the Universe with regenerated
offsets by using the keyword argument refresh_offsets=True, as documented in Issue 1893.

2.1. Communications 197

https://ambermd.org/FileFormats.php#trajectory
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
https://www.mdanalysis.org/docs/documentation_pages/coordinates/TRR.html#MDAnalysis.coordinates.TRR.TRRReader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/TRR.html#MDAnalysis.coordinates.TRR.TRRWriter
http://manual.gromacs.org/documentation/current/onlinehelp/gmx-check.html
http://manual.gromacs.org/documentation/2018/onlinehelp/gmx-trjcat.html
https://github.com/MDAnalysis/mdanalysis/issues/1893

MDAnalysis User Guide

Writing out

If the data dictionary of a Timestep contains a lambda value, this will be used for the written TRR file. Otherwise,
lambda is set to 0.

Developer notes

It sometimes can happen that the stored offsets get out off sync with the trajectory they refer to. For this the offsets
also store the number of atoms, size of the file and last modification time. If any of them change, the offsets are
recalculated. Writing of the offset file can fail when the directory where the trajectory file resides is not writable or
if the disk is full. In this case a warning message will be shown but the offsets will nevertheless be used during the
lifetime of the trajectory Reader. However, the next time the trajectory is opened, the offsets will have to be rebuilt
again.

TRZ (IBIsCO and YASP trajectory)

Coordinate reader MDAnalysis.coordinates.TRZ.TRZReader
Coordinate writer MDAnalysis.coordinates.TRZ.TRZWriter

MDAnalysis reads and writes IBIsCO / YASP TRZ binary trajectories in little-endian byte order.

TXYZ, ARC (Tinker)

Coordinate reader MDAnalysis.coordinates.TXYZ.TXYZReader
Topology parser MDAnalysis.topology.TXYZParser.TXYZParser

MDAnalysis can read Tinker xyz files .txyz and trajectory .arc files.

Developer notes

Differences between Tinker format and normal xyz files:

• there is only one header line containing both the number of atoms and a comment

• column 1 contains atom numbers (starting from 1)

• column 6 contains atoms types

• the following columns indicate connectivity (atoms to which that particular atom is bonded, according to num-
bering in column 1)

XML (HOOMD)

Topology parser MDAnalysis.topology.HoomdXMLParser.HoomdXMLParser

MDAnalysis can read topology informatin from a HOOMD XML file. Masses and charges are set to zero if not
present in the XML file. Hoomd XML does not identify molecules or residues, so placeholder values are used for
residue numbers. Bonds and angles are read if present.

198 Chapter 2. Participating

https://www.mdanalysis.org/docs/documentation_pages/coordinates/base.html#MDAnalysis.coordinates.base.Timestep
https://www.mdanalysis.org/docs/documentation_pages/coordinates/TRZ.html#MDAnalysis.coordinates.TRZ.TRZReader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/TRZ.html#MDAnalysis.coordinates.TRZ.TRZWriter
http://www.theo.chemie.tu-darmstadt.de/ibisco/IBISCO.html
http://www.theo.chemie.tu-darmstadt.de/group/services/yaspdoc/yaspdoc.html
https://www.mdanalysis.org/docs/documentation_pages/coordinates/TXYZ.html#MDAnalysis.coordinates.TXYZ.TXYZReader
https://www.mdanalysis.org/docs/documentation_pages/topology/TXYZParser.html#MDAnalysis.topology.TXYZParser.TXYZParser
https://dasher.wustl.edu/tinker/
http://chembytes.wikidot.com/tnk-tut00#toc2
https://www.mdanalysis.org/docs/documentation_pages/topology/HoomdXMLParser.html#MDAnalysis.topology.HoomdXMLParser.HoomdXMLParser
http://codeblue.umich.edu/hoomd-blue/index.html
http://codeblue.umich.edu/hoomd-blue/doc/page_xml_file_format.html

MDAnalysis User Guide

Hoomd XML format does not contain a node for names. The parser will look for a name node anyway, and if it doesn’t
find one, it will use the atom types as names. If the Hoomd XML file doesn’t contain a type node (it should), then all
atom types will be ‘none’.

Similar to the names, the parser will try to read atom type, mass, and charge from the XML file. Therefore, they are
not present, masses and charges will not be guessed. Instead, they will be set to zero, as Hoomd uses unitless mass,
charge, etc.

XPDB (Extended PDB file)

Coordinate reader MDAnalysis.coordinates.PDB.ExtendedPDBReader
Topology parser MDAnalysis.topology.ExtendedPDBParser.ExtendedPDBParser

The extended PDB reader acts virtually the same as the PDB, ENT (Standard PDB file) reader. The difference is
that extended PDB files (MDAnalysis format specifier XPDB) may contain residue sequence numbers up to 99,999
by utilizing the insertion character field of the PDB standard. Five-digit residue numbers may take up columns 23 to
27 (inclusive) instead of being confined to 23-26 (with column 27 being reserved for the insertion code in the PDB
standard).

PDB files in this format are written by popular programs such as VMD.

As extended PDB files are very similar to PDB files, tell MDAnalysis to use the Extended PDB parser by passing in
the topology_format keyword.

In [1]: import MDAnalysis as mda

In [2]: from MDAnalysis.tests.datafiles import PDB

In [3]: pdb = mda.Universe(PDB)

In [4]: pdb.trajectory.format
Out[4]: ['PDB', 'ENT']

In [5]: xpdb = mda.Universe(PDB, topology_format='XPDB')

In [6]: xpdb.trajectory.format
Out[6]: 'XPDB'

XTC (GROMACS compressed trajectory file)

Coordinate reader MDAnalysis.coordinates.XTC.XTCReader
Coordinate writer MDAnalysis.coordinates.XTC.XTCWriter

The GROMACS XTC trajectory compresses data with reduced precision (3 decimal places by default). MDAnalysis
can only read coordinates from these files. See TRR (GROMACS lossless trajectory file) for uncompressed files that
provide velocity and force information.

Reading in

MDAnalysis uses XDR based readers for GROMACS formats, which store offsets on the disk. The offsets are used to
enable access to random frames efficiently. These offsets will be generated automatically the first time the trajectory

2.1. Communications 199

https://www.mdanalysis.org/docs/documentation_pages/coordinates/PDB.html#MDAnalysis.coordinates.PDB.ExtendedPDBReader
https://www.mdanalysis.org/docs/documentation_pages/topology/ExtendedPDBParser.html#MDAnalysis.topology.ExtendedPDBParser.ExtendedPDBParser
http://www.ks.uiuc.edu/Research/vmd/
https://www.mdanalysis.org/docs/documentation_pages/coordinates/XTC.html#MDAnalysis.coordinates.XTC.XTCReader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/XTC.html#MDAnalysis.coordinates.XTC.XTCWriter

MDAnalysis User Guide

is opened, and offsets are generally stored in hidden *_offsets.npz files.1

Trajectories split across multiple files can be read continuously into MDAnalysis with continuous=True, in the
style of gmx trjcat.

XYZ trajectory

Coordinate reader MDAnalysis.coordinates.XYZ.XYZReader
Coordinate writer MDAnalysis.coordinates.XYZ.XYZWriter
Topology parser MDAnalysis.topology.XYZParser.XYZParser

The XYZ format is a loosely defined, simple coordinate trajectory format. The implemented format definition was
taken from the VMD xyzplugin and is therefore compatible with VMD.

Reading in

As XYZ files only have atom name information, the atoms are all assigned to the same residue and segment.

The default timestep in MDAnalysis is 1 ps. A different timestep can be defined by passing in the dt argument to
Universe.

XYZ specification

Definiton used by the XYZReader and XYZWriter (and the VMD xyzplugin from whence the definition was taken):

[comment line] !! NOT IMPLEMENTED !! DO NOT INCLUDE
[N] # of atoms, required by this xyz reader plugin line 1
[molecule name] name of molecule (can be blank) line 2
atom1 x y z [optional data] atom name followed by xyz coords line 3
atom2 x y z [...] and (optionally) other data.
...
atomN x y z [...] line N+2

Note

• comment lines not implemented (do not include them)

• molecule name: the line is required but the content is ignored at the moment

• optional data (after the coordinates) are presently ignored

2.1.20 Analysis

The analysis module of MDAnalysis provides the tools needed to analyse your data. Several analyses are included
with the package. These range from standard algorithms (e.g. calculating root mean squared quantities) to unique
algorithms such as the path similarity analysis.

1 Occasionally, MDAnalysis fails to read XDR offsets, resulting in an error. The workaround for this is to create the Universe with regenerated
offsets by using the keyword argument refresh_offsets=True, as documented in Issue 1893.

200 Chapter 2. Participating

http://manual.gromacs.org/documentation/2018/onlinehelp/gmx-trjcat.html
https://www.mdanalysis.org/docs/documentation_pages/coordinates/XYZ.html#MDAnalysis.coordinates.XYZ.XYZReader
https://www.mdanalysis.org/docs/documentation_pages/coordinates/XYZ.html#MDAnalysis.coordinates.XYZ.XYZWriter
https://www.mdanalysis.org/docs/documentation_pages/topology/XYZParser.html#MDAnalysis.topology.XYZParser.XYZParser
http://www.ks.uiuc.edu/Research/vmd/plugins/molfile/xyzplugin.html
http://www.ks.uiuc.edu/Research/vmd/plugins/molfile/xyzplugin.html
examples/analysis/trajectory_similarity/psa.ipynb
https://github.com/MDAnalysis/mdanalysis/issues/1893

MDAnalysis User Guide

Generally these bundled analyses are contributed by various researchers who use the code for their own work. Please
refer to the individual module documentation or relevant user guide tutorials for additional references and citation
information.

If you need functionality that is not already provided in MDAnalysis, there are several ways to write your own analysis.

Imports and dependencies

Analysis modules are not imported by default. In order to use them, you will need to import them separately, e.g.:

from MDAnalysis.analysis import align

Note: Several modules in MDAnalysis.analysis require additional Python packages. For example, encore
makes use of scikit-learn. The Python packages are not automatically installed with pip, although they are with conda.

Other modules require external programs. For example, hole requires the HOLE programs. You will need to install
these yourself.

2.1.21 Alignments and RMS fitting

The MDAnalysis.analysis.align and MDAnalysis.analysis.rms modules contain the functions used
for aligning structures, aligning trajectories, and calculating root mean squared quantities.

Note: These modules use the fast QCP algorithm to calculate the root mean square distance (RMSD) between two
coordinate sets [The05] and the rotation matrix R that minimizes the RMSD [LAT09]. Please cite these references
when using these modules.

2.1.22 Distances and contacts

The MDAnalysis.analysis.distances module provides functions to rapidly compute distances. These
largely take in coordinate arrays.

MDAnalysis.analysis.contacts contains functions and a class to analyse the fraction of native contacts over
a trajectory.

2.1.23 Trajectory similarity

A molecular dynamics trajectory with 𝑁 atoms can be considered through a path through 3𝑁 -dimensional molecular
configuration space. MDAnalysis contains a number of algorithms to compare the conformational ensembles of dif-
ferent trajectories. Most of these are in the MDAnalysis.analysis.encore module ([TPB+15]) and compare
estimated probability distributions to measure similarity. The path similarity analysis compares the RMSD between
pairs of structures in conformation transition paths. MDAnalysis.analysis.encore also contains functions for
evaluating the conformational convergence of a trajectory using the similarity over conformation clusters or similarity
in a reduced dimensional space.

2.1. Communications 201

examples/analysis/custom_trajectory_analysis.ipynb
http://scikit-learn.org/
https://www.mdanalysis.org/docs/documentation_pages/analysis/hole.html#module-MDAnalysis.analysis.hole
http://www.holeprogram.org/
https://www.mdanalysis.org/docs/documentation_pages/analysis/align.html#module-MDAnalysis.analysis.align
https://www.mdanalysis.org/docs/documentation_pages/analysis/rms.html#module-MDAnalysis.analysis.rms
https://www.mdanalysis.org/docs/documentation_pages/analysis/distances.html#module-MDAnalysis.analysis.distances
https://www.mdanalysis.org/docs/documentation_pages/analysis/contacts.html#module-MDAnalysis.analysis.contacts
/examples/analysis/trajectory_similarity/psa.html
/examples/analysis/trajectory_similarity/clustering_ensemble_similarity.html
/examples/analysis/trajectory_similarity/dimension_reduction_ensemble_similarity.html
/examples/analysis/trajectory_similarity/dimension_reduction_ensemble_similarity.html

MDAnalysis User Guide

2.1.24 Structure

2.1.25 Volumetric analyses

2.1.26 Dimension reduction

A molecular dynamics trajectory with 𝑁 atoms can be considered through a path through 3𝑁 -dimensional molecular
configuration space. It remains difficult to extract important dynamics or compare trajectory similarity from such
a high-dimensional space. However, collective motions and physically relevant states can often be effectively de-
scribed with low-dimensional representations of the conformational space explored over the trajectory. MDAnalysis
implements two methods for dimensionality reduction.

Principal component analysis is a common linear dimensionality reduction technique that maps the coordinates
in each frame of your trajectory to a linear combination of orthogonal vectors. The vectors are called principal
components, and they are ordered such that the first principal component accounts for the most variance in the original
data (i.e. the largest uncorrelated motion in your trajectory), and each successive component accounts for less and less
variance. Trajectory coordinates can be transformed onto a lower-dimensional space (essential subspace) constructed
from these principal components in order to compare conformations. Your trajectory can also be projected onto each
principal component in order to visualise the motion described by that component.

Diffusion maps are a non-linear dimensionality reduction technique that embeds the coordinates of each frame onto
a lower-dimensional space, such that the distance between each frame in the lower-dimensional space represents their
“diffusion distance”, or similarity. It integrates local information about the similarity of each point to its neighours,
into a global geometry of the intrinsic manifold. This means that this technique is not suitable for trajectories where the
transitions between conformational states is not well-sampled (e.g. replica exchange simulations), as the regions may
become disconnected and a meaningful global geometry cannot be approximated. Unlike PCA, there is no explicit
mapping between the components of the lower-dimensional space and the original atomic coordinates; no physical
interpretation of the eigenvectors is immediately available.

For computing similarity, see the tutorials in Trajectory similarity.

2.1.27 Polymers and membranes

MDAnalysis has several analyses specifically for polymers, membranes, and membrane proteins.

2.1.28 Writing your own trajectory analysis

We create our own analysis methods for calculating the radius of gyration of a selection of atoms.

This can be done three ways, from least to most flexible:

1. Running the analysis directly from a function

2. Turning a function into a class

3. Writing your own class

The building blocks and methods shown here are only suitable for analyses that involve iterating over the trajectory
once.

If you implement your own analysis method, please consider contributing it to the MDAnalysis codebase!

Last executed: Feb 07, 2020 with MDAnalysis 0.20.2-dev0

Last updated: February 2020

Minimum version of MDAnalysis: 0.19.0

202 Chapter 2. Participating

https://www.mdanalysis.org/UserGuide/contributing.html

MDAnalysis User Guide

Packages required:

• MDAnalysis ([MADWB11], [GLB+16])

• MDAnalysisTests

[1]: import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD, DCD2
from MDAnalysis.analysis.base import (AnalysisBase,

AnalysisFromFunction,
analysis_class)

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

Radius of gyration

Let’s start off by defining a standalone analysis function.

The radius of gyration of a structure measures how compact it is. In GROMACS, it is calculated as follows:

𝑅𝑔 =

√︃∑︀
𝑖𝑚𝑖r2𝑖∑︀
𝑖𝑚𝑖

where 𝑚𝑖 is the mass of atom 𝑖 and r𝑖 is the position of atom 𝑖, relative to the center-of-mass of the selection.

The radius of gyration around each axis can also be determined separately. For example, the radius of gyration around
the x-axis:

𝑅𝑖,𝑥 =

√︃∑︀
𝑖𝑚𝑖[𝑟2𝑖,𝑦 + 𝑟2𝑖,𝑧]∑︀

𝑖𝑚𝑖

Below, we define a function that takes an AtomGroup and calculates the radii of gyration. We could write this function
to only need the AtomGroup. However, we also add in a masses argument and a total_mass keyword to avoid
recomputing the mass and total mass for each frame.

[2]: def radgyr(atomgroup, masses, total_mass=None):
coordinates change for each frame
coordinates = atomgroup.positions
center_of_mass = atomgroup.center_of_mass()

get squared distance from center
ri_sq = (coordinates-center_of_mass)**2
sum the unweighted positions
sq = np.sum(ri_sq, axis=1)
sq_x = np.sum(ri_sq[:,[1,2]], axis=1) # sum over y and z
sq_y = np.sum(ri_sq[:,[0,2]], axis=1) # sum over x and z
sq_z = np.sum(ri_sq[:,[0,1]], axis=1) # sum over x and y

make into array
sq_rs = np.array([sq, sq_x, sq_y, sq_z])

weight positions
rog_sq = np.sum(masses*sq_rs, axis=1)/total_mass
square root and return
return np.sqrt(rog_sq)

2.1. Communications 203

http://manual.gromacs.org/documentation/2019-rc1/reference-manual/analysis/radius-of-gyration.html

MDAnalysis User Guide

Loading files

The test files we will be working with here feature adenylate kinase (AdK), a phosophotransferase enzyme.
([BDPW09])

[3]: u = mda.Universe(PSF, DCD)
protein = u.select_atoms('protein')

u2 = mda.Universe(PSF, DCD2)

Creating an analysis from a function

MDAnalysis.analysis.base.AnalysisFromFunction can create an analysis from a function that works
on AtomGroups. It requires the function itself, the trajectory to operate on, and then the arguments / keyword argu-
ments necessary for the function.

[4]: rog = AnalysisFromFunction(radgyr, u.trajectory,
protein, protein.masses,
total_mass=np.sum(protein.masses))

rog.run();

Running the analysis iterates over the trajectory. The output is saved in rog.results, which has the same number
of rows, as frames in the trajectory.

[5]: rog.results.shape

[5]: (98, 4)

[6]: labels = ['all', 'x-axis', 'y-axis', 'z-axis']
for col, label in zip(rog.results.T, labels):

plt.plot(col, label=label)
plt.legend()
plt.ylabel('Radius of gyration (Å)')
plt.xlabel('Frame');

You can also re-run the analysis with different frame selections.

Below, we start from the 10th frame and take every 8th frame until the 80th. Note that the slice includes the start
frame, but does not include the stop frame index (much like the actual range() function).

204 Chapter 2. Participating

MDAnalysis User Guide

[7]: rog_10 = AnalysisFromFunction(radgyr, u.trajectory,
protein, protein.masses,
total_mass=np.sum(protein.masses))

rog_10.run(start=10, stop=80, step=7)
rog_10.results.shape

[7]: (10, 4)

[8]: for col, label in zip(rog_10.results.T, labels):
plt.plot(col, label=label)

plt.legend()
plt.ylabel('Radius of gyration (Å)')
plt.xlabel('Frame');

Transforming a function into a class

While the AnalysisFromFunction is convenient for quick analyses, you may want to turn your function into a
class that can be applied to many different trajectories, much like other MDAnalysis analyses.

You can apply analysis_class to any function that you can run with AnalysisFromFunction to get a class.

[9]: RadiusOfGyration = analysis_class(radgyr)

To run the analysis, pass exactly the same arguments as you would for AnalysisFromFunction.

[10]: rog_u1 = RadiusOfGyration(u.trajectory, protein,
protein.masses,
total_mass=np.sum(protein.masses))

rog_u1.run();

As with AnalysisFromFunction, the results are in results.

[11]: for col, label in zip(rog_u1.results.T, labels):
plt.plot(col, label=label)

plt.legend()
plt.ylabel('Radius of gyration (Å)')
plt.xlabel('Frame');

2.1. Communications 205

MDAnalysis User Guide

You can reuse the class for other trajectories and selections.

[12]: ca = u2.select_atoms('name CA')

rog_u2 = RadiusOfGyration(u2.trajectory, ca,
ca.masses,
total_mass=np.sum(ca.masses))

rog_u2.run();

[13]: for col, label in zip(rog_u2.results.T, labels):
plt.plot(col, label=label)

plt.legend()
plt.ylabel('Radius of gyration (Å)')
plt.xlabel('Frame');

206 Chapter 2. Participating

MDAnalysis User Guide

Creating your own class

Although AnalysisFromFunction and analysis_class are convenient, they can be too limited for complex
algorithms. You may need to write your own class.

MDAnalysis provides the MDAnalysis.analysis.base.AnalysisBase class as a template for creating mul-
tiframe analyses. This class automatically sets up your trajectory reader for iterating, and includes an optional progress
meter.

The analysis is always run by calling run(). AnalysisFromFunction actually subclasses AnalysisBase,
and analysis_class returns a subclass of AnalysisFromFunction, so the behaviour of run() remains
identical.

1. Define __init__

You can define a new analysis by subclassing AnalysisBase. Initialise the analysis with the __init__method, where
you must pass the trajectory that you are working with to AnalysisBase.__init__(). You can also pass in the
verbose keyword. If verbose=True, the class will set up a progress meter for you.

2. Define your analysis in _single_frame() and other methods

Implement your functionality as a function over each frame of the trajectory by defining _single_frame(). This
function gets called for each frame of your trajectory.

You can also define _prepare() and _conclude() to set your analysis up before looping over the trajectory, and
to finalise the results that you have prepared. In order, run() calls:

• _prepare()

• _single_frame() (for each frame of the trajectory that you are iterating over)

• _conclude()

Class subclassed from AnalysisBase can make use of several properties when defining the methods above:

• self.start: frame index to start analysing from. Defined in run()

• self.stop: frame index to stop analysis. Defined in run()

• self.step: number of frames to skip in between. Defined in run()

• self.n_frames: number of frames to analyse over. This can be helpful in initialising result arrays.

• self._verbose: whether to be verbose.

• self._trajectory: the actual trajectory

• self._ts: the current timestep object

• self._frame_index: the index of the currently analysed frame. This is not the absolute index of the frame
in the trajectory overall, but rather the relative index of the frame within the list of frames to be analysed. You
can think of it as the number of times that self._single_frame() has already been called.

Below, we create the class RadiusOfGyration2 to run the analysis function that we have defined above, and add
extra information such as the time of the corresponding frame.

[14]: class RadiusOfGyration2(AnalysisBase): # subclass AnalysisBase

def __init__(self, atomgroup, verbose=True):
"""

(continues on next page)

2.1. Communications 207

MDAnalysis User Guide

(continued from previous page)

Set up the initial analysis parameters.
"""
must first run AnalysisBase.__init__ and pass the trajectory
trajectory = atomgroup.universe.trajectory
super(RadiusOfGyration2, self).__init__(trajectory,

verbose=verbose)
set atomgroup as a property for access in other methods
self.atomgroup = atomgroup
we can calculate masses now because they do not depend
on the trajectory frame.
self.masses = self.atomgroup.masses
self.total_mass = np.sum(self.masses)

def _prepare(self):
"""
Create array of zeroes as a placeholder for results.
This is run before we begin looping over the trajectory.
"""
This must go here, instead of __init__, because
it depends on the number of frames specified in run().
self.results = np.zeros((self.n_frames, 6))
We put in 6 columns: 1 for the frame index,
1 for the time, 4 for the radii of gyration

def _single_frame(self):
"""
This function is called for every frame that we choose
in run().
"""
call our earlier function
rogs = radgyr(self.atomgroup, self.masses,

total_mass=self.total_mass)
save it into self.results
self.results[self._frame_index, 2:] = rogs
the current timestep of the trajectory is self._ts
self.results[self._frame_index, 0] = self._ts.frame
the actual trajectory is at self._trajectory
self.results[self._frame_index, 1] = self._trajectory.time

def _conclude(self):
"""
Finish up by calculating an average and transforming our
results into a DataFrame.
"""
by now self.result is fully populated
self.average = np.mean(self.results[:, 2:], axis=0)
columns = ['Frame', 'Time (ps)', 'Radius of Gyration',

'Radius of Gyration (x-axis)',
'Radius of Gyration (y-axis)',
'Radius of Gyration (z-axis)',]

self.df = pd.DataFrame(self.results, columns=columns)

Because RadiusOfGyration2 calculates the masses of the selected AtomGroup itself, we do not need to pass it
in ourselves.

[15]: rog_base = RadiusOfGyration2(protein, verbose=True).run()

208 Chapter 2. Participating

MDAnalysis User Guide

Step 98/98 [100.0%]

As calculated in _conclude(), the average radii of gyrations are at rog.average.

[16]: rog_base.average

[16]: array([18.26549552, 12.85342131, 15.37359575, 16.29185734])

The results are available at rog.results as an array or rog.df as a DataFrame.

[17]: rog_base.df

[17]: Frame Time (ps) Radius of Gyration Radius of Gyration (x-axis) \
0 0.0 1.000000 16.669018 12.679625
1 1.0 2.000000 16.673217 12.640025
2 2.0 3.000000 16.731454 12.696454
3 3.0 4.000000 16.722283 12.677194
4 4.0 5.000000 16.743961 12.646981
..
93 93.0 93.999992 19.562034 13.421683
94 94.0 94.999992 19.560575 13.451335
95 95.0 95.999992 19.550571 13.445914
96 96.0 96.999991 19.568381 13.443243
97 97.0 97.999991 19.591575 13.442750

Radius of Gyration (y-axis) Radius of Gyration (z-axis)
0 13.749343 14.349043
1 13.760545 14.382960
2 13.801342 14.429350
3 13.780732 14.444711
4 13.814553 14.489046
..
93 16.539112 17.653968
94 16.508649 17.656678
95 16.500640 17.646130
96 16.507396 17.681294
97 16.537926 17.704494

[98 rows x 6 columns]

Using this DataFrame we can easily plot our results.

[18]: ax = rog_base.df.plot(x='Time (ps)', y=rog_base.df.columns[2:])
ax.set_ylabel('Radius of gyration (A)');

2.1. Communications 209

MDAnalysis User Guide

We can also run the analysis over a subset of frames, the same as the output from AnalysisFromFunction and
analysis_class.

[19]: rog_base_10 = RadiusOfGyration2(protein, verbose=True)
rog_base_10.run(start=10, stop=80, step=7);

Step 10/10 [100.0%]

[20]: rog_base_10.results.shape

[20]: (10, 6)

[21]: rog_base_10.df

[21]: Frame Time (ps) Radius of Gyration Radius of Gyration (x-axis) \
0 10.0 10.999999 16.852127 12.584163
1 17.0 17.999998 17.019587 12.544784
2 24.0 24.999998 17.257429 12.514341
3 31.0 31.999997 17.542565 12.522147
4 38.0 38.999997 17.871241 12.482385
5 45.0 45.999996 18.182243 12.533023
6 52.0 52.999995 18.496493 12.771949
7 59.0 59.999995 18.839346 13.037335
8 66.0 66.999994 19.064333 13.061491
9 73.0 73.999993 19.276639 13.161863

Radius of Gyration (y-axis) Radius of Gyration (z-axis)
0 14.001589 14.614469
1 14.163276 14.878262
2 14.487021 15.137873
3 14.747461 15.530339
4 15.088865 15.977444
5 15.451285 16.290153
6 15.667003 16.603098
7 15.900327 16.942533
8 16.114195 17.222884
9 16.298539 17.444213

210 Chapter 2. Participating

MDAnalysis User Guide

[22]: ax_10 = rog_base_10.df.plot(x='Time (ps)',
y=rog_base_10.df.columns[2:])

ax_10.set_ylabel('Radius of gyration (A)');

Contributing to MDAnalysis

If you think that you will want to reuse your new analysis, or that others might find it helpful, please consider con-
tributing it to the MDAnalysis codebase. Making your code open-source can have many benefits; others may notice
an unexpected bug or suggest ways to optimise your code. If you write your analysis for a specific publication, please
let us know; we will ask those who use your code to cite your reference in published work.

References

[1] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping of
Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of Molecular Biology,
394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164,
doi:10.1016/j.jmb.2009.09.009.

[2] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L. Seyler, Jan
Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beckstein. MDAnalysis: A Python
Package for the Rapid Analysis of Molecular Dynamics Simulations. Proceedings of the 15th Python in Science
Conference, pages 98–105, 2016. 00152. URL: https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.
html, doi:10.25080/Majora-629e541a-00e.

[3] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MDAnalysis: A toolkit
for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10):2319–2327, July
2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787, doi:10.1002/jcc.21787.

2.1.29 Standard residues in MDAnalysis selections

Proteins

The residue names listed here are accessible via the “protein” keyword in the Atom selection language.

2.1. Communications 211

https://www.mdanalysis.org/UserGuide/contributing.html
https://www.mdanalysis.org/UserGuide/contributing.html
https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
http://doi.wiley.com/10.1002/jcc.21787

MDAnalysis User Guide

The below names are drawn from the CHARMM 27, OPLS-AA, GROMOS 53A6, AMBER 03, and AMBER 99sb*-
ILDN force fields.

ACE ALA ALAD ARG ARGN ASF ASH ASN
ASN1 ASP ASPH CALA CARG CASF CASN CASP
CCYS CCYX CGLN CGLU CGLY CHID CHIE CHIP
CILE CLEU CLYS CME CMET CPHE CPRO CSER
CTHR CTRP CTYR CVAL CYM CYS CYS1 CYS2
CYSH CYX DAB GLH GLN GLU GLUH GLY
HID HIE HIP HIS HIS1 HIS2 HISA HISB
HISD HISE HISH HSD HSE HSP HYP ILE
LEU LYN LYS LYSH MET MSE NALA NARG
NASN NASP NCYS NCYX NGLN NGLU NGLY NHID
NHIE NHIP NILE NLEU NLYS NME NMET NPHE
NPRO NSER NTHR NTRP NTYR NVAL ORN PGLU
PHE PRO QLN SER THR TRP TYR VAL

Protein backbone

Protein backbone atoms in MDAnalysis belong to a recognised protein residue and have the atom names:

N CA C O

Nucleic acids

The residue names listed here are accessible via the “nucleic” keyword in the Atom selection language.

The below names are drawn from largely from the CHARMM force field.

ADE URA CYT GUA THY DA DC DG
DT RA RU RG RC A T U
C G DA5 DC5 DG5 DT5 DA3 DC3
DG3 DT3 RA5 RU5 RG5 RC5 RA3 RU3
RG3 RC3

Nucleic backbone

Nucleic backbone atoms in MDAnalysis belong to a recognised nucleic acid residue and have the atom names:

P C5’ C3’ O3’ O5’

Nucleobases

Nucleobase atoms from nucleic acid residues are recognised based on their names in CHARMM.

N9 N7 C8 C5 C4 N3 C2 N1
C6 O6 N2 N6 O2 N4 O4 C5M

212 Chapter 2. Participating

MDAnalysis User Guide

Nucleic sugars

Nucleic sugar atoms from nucleic acid residues are recognised by MDAnalysis if they have the atom names:

C1’ C2’ C3’ C4’ O4’

2.1.30 Advanced topology concepts

Adding a Residue or Segment to a Universe

To add a Residue or Segment to a topology, use the Universe.add_Residue or Universe.
add_Segment methods.

>>> u = mda.Universe(PSF, DCD)
>>> u.segments
<SegmentGroup with 1 segment>
>>> u.segments.segids
array(['4AKE'], dtype=object)
>>> newseg = u.add_Segment(segid='X')
>>> u.segments.segids
array(['4AKE', 'X'], dtype=object)
>>> newseg.atoms
<AtomGroup with 0 atoms>

To assign the last 100 residues from the Universe to this new Segment:

>>> u.residues[-100:].segments = newseg
>>> newseg.atoms
<AtomGroup with 1600 atoms>

Another example is creating custom segments for protein domains.

Molecules

In MDAnalysis, a molecule is a GROMACS-only concept that is relevant in some analysis methods. A group of atoms
is considered a “molecule” if it is defined by the [moleculetype] section in a GROMACS topology. Molecules
are only defined if a Universe is created from a GROMACS topology file (i.e. with a .tpr extension). Unlike fragments,
they are not accessible directly from atoms.

>>> tpr = mda.Universe(TPR)
>>> tpr.atoms.molecules
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "MDAnalysis/core/groups.py", line 2278, in __getattr__

cls=self.__class__.__name__, attr=attr))
AttributeError: AtomGroup has no attribute molecules

However, the order (molnum) and name (moltype) of each molecule is accessible as topology attributes:

>>> tpr.atoms.molnums
array([0, 0, 0, ..., 11086, 11087, 11088])
>>> tpr.atoms.moltypes
array(['AKeco', 'AKeco', 'AKeco', ..., 'NA+', 'NA+', 'NA+'], dtype=object)

2.1. Communications 213

https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Residue
https://www.mdanalysis.org/docs/documentation_pages/core/groups.html#MDAnalysis.core.groups.Segment
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.add_Residue
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.add_Segment
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe.add_Segment
https://www.mdanalysis.org/docs/documentation_pages/core/universe.html#MDAnalysis.core.universe.Universe
http://manual.gromacs.org/documentation/2019/reference-manual/file-formats.html#top

MDAnalysis User Guide

Adding custom TopologyAttrs

2.1.31 Example data

MDAnalysis offers a collection of example data files and datasets to run tests and tutorials. These are split into two
packages:

• MDAnalysisTests: primarily for unit tests of the code

• MDAnalysisData: datasets for workshops and tutorials

MDAnalysisTests

While this is installed as a separate package, you should import files like so:

import MDAnalysis as mda
from MDAnalysis.tests.datafiles import PSF, DCD

u = mda.Universe(PSF, DCD)

A complete list of files and descriptions is in the mdanalysis/testsuite/MDAnalysisTests/
datafiles.py file. The actual files are stored in the mdanalysis/testsuite/MDAnalysisTests/
data/ directory.

MDAnalysisData

The MDAnalysisData package is an interface to download, cache, and access certain datasets hosted on external
repositories (e.g. figshare, zenodo, DataDryad). Data is not downloaded upon installation, so the package itself is
small; but the directory where the datasets are cached can grow significantly.

You can access datasets like so:

import MDAnalysis as mda
from MDAnalysisData import datasets
adk = datasets.fetch_adk_equilibrium()
u = mda.Universe(adk.topology, adk.trajectory)

to see the description of the dataset
print(adk.DESCR)

The cached files are stored by default in the ~/MDAnalysis_data directory. This can be changed by setting the
environment variable MDANALYSIS_DATA. You can change this for a Terminal session with the below command:

export MDANALYSIS_DATA=/my/chosen/path/MDAnalysis_data

Add it to your .bashrc for a permanent change.

echo 'export MDANALYSIS_DATA=/my/chosen/path/MDAnalysis_data' >> ~/.bashrc

In Python, you can check the location of your caching directory:

MDAnalysisData.base.get_data_home()

And clear the directory with:

214 Chapter 2. Participating

https://www.mdanalysis.org/MDAnalysisData/
https://figshare.com/
https://zenodo.org/
https://www.datadryad.org/

MDAnalysis User Guide

MDAnalysisData.base.clear_data_home()

A list of datasets can be found at the MDAnalysisData documentation.

2.1.32 Contributing to MDAnalysis

MDAnalysis is a free and open source project. It evolves and grows with the demands of its user base. The development
team very much welcomes contributions from its users. Contributions can take many forms, such as:

• bug reports or enhancement requests filed through the Issue Tracker

• bug fixes

• improvements to the code (speed, clarity, modernised code)

• new features in the code

• improvements and additions to documentation (including typo fixes)

• improvements to the build systems

• questions or discussions on the mdnalysis-discussion mailing list

The MDAnalysis community subscribes to a Code of Conduct that all community members agree and adhere to —
please read it.

Important: The MDAnalysis and MDAnalysisTests packages are distributed under the GNU General Public Li-
cense, version 2 (or any later version). This is a copyleft license: not only is MDAnalysis open-source, but all
derivative work must be as well. Any code, documentation, or files that you contribute to MDAnalysis will also be
made available under this license. Be sure that you are comfortable with that before you push additions to GitHub.

Parts of this page came from the Contributing to pandas guide.

Where to start?

All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome.

If you are brand new to MDAnalysis or open-source development, we recommend going through the guides for con-
tributing to the main codebase or the user guide. If you are new to Git and version control, have a look at Version
control, Git, and GitHub.

Version control, Git, and GitHub

Git is a version control system that allows many people to work together on a project. Working with Git can be one of
the more daunting aspects of contributing to MDAnalysis. Sticking to the guidelines below will help keep the process
straightforward and mostly trouble free. As always, if you are having difficulties please feel free to ask for help.

The code is hosted on GitHub. To contribute you will need to sign up for a free GitHub account.

Some great resources for learning Git:

• the GitHub help pages.

• the NumPy’s documentation.

• Matthew Brett’s Pydagogue.

2.1. Communications 215

https://www.mdanalysis.org/MDAnalysisData/usage.html
https://github.com/MDAnalysis/mdanalysis/issues
http://groups.google.com/group/mdnalysis-discussion
https://www.mdanalysis.org/pages/conduct/
https://www.gnu.org/licenses/gpl-2.0.html
https://www.gnu.org/licenses/gpl-2.0.html
http://pandas.pydata.org/pandas-docs/stable/contributing.html
http://git-scm.com/
https://www.github.com/mdanalysis/mdanalysis
https://github.com/signup/free
http://help.github.com/
http://docs.scipy.org/doc/numpy/dev/index.html
http://matthew-brett.github.com/pydagogue/

MDAnalysis User Guide

Getting started with Git

GitHub has instructions for installing git, setting up your SSH key, and configuring git. All these steps need to be
completed before you can work seamlessly between your local repository and GitHub.

2.1.33 Contributing to the main codebase

If you would like to contribute, start by searching through the issues and pull requests to see whether someone else
has raised a similar idea or question.

If you don’t see your idea or problem listed, do one of the following:

• If your contribution is minor, such as a typo fix, go ahead and fix it by following the guide below and open a
pull request.

• If your contribution is major, such as a bug fix or a new feature, start by opening an issue first. That way, other
people can weigh in on the discussion before you do any work. If you also create a pull request, you should link
it to the issue by including the issue number in the pull request’s description.

Here is an overview of the development workflow for code or inline code documentation, as expanded on throughout
the rest of the page.

1. Fork the MDAnalysis repository from the mdanalysis account into your own account

2. Set up an isolated virtual environment for code development

3. Build development versions of MDAnalysis and MDAnalysisTests on your computer into the virtual environment

4. Create a new branch off the develop branch

5. Add your new feature or bug fix or add your new documentation

6. Add and run tests (if adding to the code)

7. Build and view the documentation (if adding to the docs)

8. Commit and push your changes, and open a pull request.

Working with the code

Forking

You will need your own fork to work on the code. Go to the MDAnalysis project page and hit the Fork button. You
will want to clone your fork to your machine:

git clone https://github.com/your-user-name/mdanalysis.git
cd mdanalysis
git remote add upstream https://github.com/MDAnalysis/mdanalysis

This creates the directory mdanalysis and connects your repository to the upstream (main project) MDAnalysis repos-
itory.

Creating a development environment

To change code and test changes, you’ll need to build both MDAnalysis and MDAnalysisTests from source. This
requires a Python environment. We highly recommend that you use virtual environments. This allows you to have
multiple experimental development versions of MDAnalysis that do not interfere with each other, or your own stable

216 Chapter 2. Participating

http://help.github.com/set-up-git-redirect
https://github.com/MDAnalysis/mdanalysis/issues
https://help.github.com/en/github/getting-started-with-github/fork-a-repo
https://github.com/MDAnalysis/mdanalysis
https://help.github.com/en/github/creating-cloning-and-archiving-repositories/cloning-a-repository

MDAnalysis User Guide

version. Since MDAnalysis is split into the actual package and a test suite, you need to install both modules in
development mode.

You can do this either with conda or pip.

With conda

Install either Anaconda or miniconda. Make sure your conda is up to date:

conda update conda

Create a new environment with conda create. This will allow you to change code in an isolated environment
without touching your base Python installation, and without touching existing environments that may have stable
versions of MDAnalysis. :

conda create --name mdanalysis-dev

Activate the environment to build MDAnalysis into it:

conda activate mdanalysis-dev

To view your environments:

conda info -e

To list the packages installed in your current environment:

conda list

To return to your root environment:

conda deactivate

See the full conda docs here.

With pip and virtualenv

Like conda, virtual environments managed with virtualenv allow you to use different versions of Python and Python
packages for your different project. Unlike conda, virtualenv is not a general-purpose package manager. Instead, it
leverages what is available on your system, and lets you install Python packages using pip.

To use virtual environments you have to install the virtualenv package first. This can be done with either pip or the
package manager of your system:

pip install virtualenv
or on ubuntu
sudo apt install virtualenv
or on fedora
sudo dnf install python-virtualenv

Virtual environments can be created for each project directory.

cd my-project/
virtualenv my-project-env

2.1. Communications 217

https://www.anaconda.com/download/
https://conda.io/miniconda.html
http://conda.pydata.org/docs
https://virtualenv.pypa.io/en/latest/

MDAnalysis User Guide

This will create a new folder my-project-env. This folder contains the virtual environment and all packages you
have installed in it. To activate it in the current terminal run:

source myproject-env/bin/activate

Now you can install packages via pip without affecting your global environment. The packages that you install when
the environment is activated will be available in terminal sessions that have the environment activated. You can
deactivate the virtual environment by running:

deactivate

The virtualenvwrapper package makes virtual environments easier to use. It provides some very useful features:

• it organises the virtual environment into a single user-defined directory, so they are not scattered throughout the
file system;

• it defines commands for the easy creation, deletion, and copying of virtual environments;

• it defines a command to activate a virtual environment using its name;

• all commands defined by virtualenvwrapper have tab-completion for virtual environment names.

You first need to install virtualenvwrapper outside of a virtual environment:

pip install virtualenvwrapper
or on ubuntu
sudo apt install virtualenvwrapper
or on fedora
sudo dnf install python-virtualenvwrapper

Then, you need to load it into your terminal session. Add the following lines in ~/.bashrc. They will be executed
every time you open a new terminal session:

Decide where to store the virtual environments
export WORKON_HOME=~/Envs
Make sure the directory exists
mkdir -p ${WORKON_HOME}
Load virtualenvwrapper
source /usr/local/bin/virtualenvwrapper.sh

Open a new terminal or run source ~/.bashrc to update your session. You can now create a virtual environment
with:

mkvirtualenv my-project

Regardless of your current working directory, the environment is created in ~/Envs/ and it is now loaded in our
terminal session.

You can load your virtual environments by running workon my-project, and exit them by running
deactivate.

Virtual environments, especially with virtualenvwrapper, can do much more. For example, you can create
virtual environments with different python interpreters with the -p flag. The Hitchhiker’s Guide to Python has a good
tutorial that gives a more in-depth explanation of virtual environments. The virtualenvwrapper documentation is also
a good resource to read.

218 Chapter 2. Participating

https://virtualenvwrapper.readthedocs.io/en/latest/
https://docs.python-guide.org/dev/virtualenvs/
https://virtualenvwrapper.readthedocs.io/en/latest/

MDAnalysis User Guide

On a Mac

One more step is often required on macOS, because of the default number of files that a process can open simultane-
ously is quite low (256). To increase the number of files that can be accessed, run the following command:

ulimit -n 4096

This sets the number of files to 4096. However, this command only applies to your currently open terminal session.
To keep this high limit, add the above line to your ~/.profile.

Building MDAnalysis

Make sure that you have cloned the repository and activated your virtual environment. First we need to install depen-
dencies:

if using conda
conda install -c biobuilds -c conda-forge \

pip cython numpy mmtf-python mock six biopython \
networkx cython matplotlib scipy griddataformats \
hypothesis gsd codecov "seaborn>=0.7.0,<=0.9" \
clustalw=2.1 netcdf4 scikit-learn "joblib>=0.12"\
psutil pytest

if using conda with python 3.7 or 3.8, also run
conda install -c conda-forge parmed

if using conda with other versions of python, also run
pip install parmed

if using pip and virtualenv
pip install cython numpy mmtf-python mock six biopython \

networkx cython matplotlib scipy griddataformats \
hypothesis gsd codecov "seaborn>=0.7.0,<=0.9" \
netcdf4 scikit-learn "joblib>=0.12" parmed psutil pytest

Ensure that you have a working C/C++ compiler (e.g. gcc or clang). You will also need Python 3.4. We will now
install MDAnalysis.

go to the mdanalysis source directory
cd mdanalysis/

Build and install the MDAnalysis package
cd package/
pip install -e .

Build and install the test suite
cd ../testsuite/
pip install -e .

At this point you should be able to import MDAnalysis from your locally built version. If you are running the
development version, this is visible from the version number ending in “-dev0”. For example:

$ python # start an interpreter
>>> import MDAnalysis as mda
>>> mda.__version__
'0.20.2-dev0'

2.1. Communications 219

MDAnalysis User Guide

If your version number does not end in “-dev0”, you may be on the master branch. In your mdanalysis/ directory,
switch to the develop branch:

$ git checkout develop
Switched to branch 'develop'

Branches in MDAnalysis

There are two important branches in MDAnalysis:

• master: for production-ready code

• develop: for development code

The master branch is only for stable, production-ready code. Development code should never be committed to this
branch. Typically, code is only committed by the release manager, when a release is ready.

The develop branch can be considered an “integration” branch for including your code into the next release. Only
working, tested code should be committed to this branch. Code contributions (“features”) should branch off develop
rather than master.

Creating a branch

The develop branch should only contain approved, tested code, so create a feature branch for making your changes.
For example, to create a branch called shiny-new-feature from develop:

git checkout -b shiny-new-feature develop

This changes your working directory to the shiny-new-feature branch. Keep any changes in this branch specific
to one bug or feature so it is clear what the branch brings to MDAnalysis. You can have many branches with different
names and switch in between them using the git checkout my-branch-name command.

There are several special branch names that you should not use for your feature branches:

• master

• develop

• release-*

release branches are used to prepare a new production release and should be handled by the release manager only.

Writing new code

Code formatting in Python

MDAnalysis is a project with a long history and many contributors; it hasn’t used a consistent coding style. Since
version 0.11.0, we are trying to update all the code to conform with PEP8. Our strategy is to update the style every
time we touch an old function and thus switch to PEP8 continuously.

Important requirements (from PEP8):

• keep line length to 79 characters or less; break long lines sensibly

• indent with spaces and use 4 spaces per level

• naming:

220 Chapter 2. Participating

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

MDAnalysis User Guide

– classes: CapitalClasses (i.e. capitalized nouns without spaces)

– methods and functions: underscore_methods (lower case, with underscores for spaces)

We recommend that you use a Python Integrated Development Environment (IDE) (PyCharm and others) or external
tools like flake8 for code linting. For integration of external tools with emacs and vim, check out elpy (emacs) and
python-mode (vim).

To apply the code formatting in an automated way, you can also use code formatters. External tools include autopep8
and yapf. Most IDEs either have their own code formatter or will work with one of the above through plugins.

Modules and dependencies

MDAnalysis strives to keep dependencies small and lightweight. Code outside the MDAnalysis.analysis and
MDAnalysis.visualization modules should only rely on the core dependencies, which are always installed.
Analysis and visualization modules can use any any package, but the package is treated as optional.

Imports in the code should follow the General rules for importing.

See also:

See Module imports in MDAnalysis for more information.

Developing in Cython

The setup.py script first looks for the .c files included in the standard MDAnalysis distribution. These are not in
the GitHub repository, so setup.py will use Cython to compile extensions. .pyx source files are used instead of .c
files. From there, .pyx files are converted to .c files if they are newer than the already present .c files or if the --force
flag is set (i.e. python setup.py build --force). End users (or developers) should not trigger the .pyx to .c
conversion, since .c files delivered with source packages are always up-to-date. However, developers who work on the
.pyx files will automatically trigger the conversion since .c files will then be outdated.

Place all source files for compiled shared object files into the same directory as the final shared object file.

.pyx files and cython-generated .c files should be in the same directory as the .so files. External dependent
C/C++/Fortran libraries should be in dedicated src/ and include/ folders. See the following tree as an exam-
ple:

MDAnalysis
|--lib
| |-- _distances.so
| |-- distances.pyx
| |-- distances.c
|-- coordinates

|-- _dcdmodule.so
|-- src

|-- dcd.c
|-- include

|-- dcd.h

Testing your code

MDAnalysis takes testing seriously. All code added to MDAnalysis should have tests to ensure that it works as
expected; we aim for 90% coverage. See Tests in MDAnalysis for more on writing, running, and interpreting tests.

2.1. Communications 221

https://www.jetbrains.com/pycharm/
http://flake8.readthedocs.org/en/latest/
https://github.com/jorgenschaefer/elpy
https://github.com/klen/python-mode
https://github.com/hhatto/autopep8
https://github.com/google/yapf

MDAnalysis User Guide

Documenting your code

Changes to the code should be reflected in the ongoing CHANGELOG. Add an entry here to document your fix, en-
hancement, or change. In addition, add your name to the author list. If you are addressing an issue, make sure to
include the issue number.

Adding your code to MDAnalysis

Committing your code

When you are happy with a set of changes and all the tests pass, it is time to commit. All changes in one revision
should have a common theme. If you implemented two rather different things (say, one bug fix and one new feature),
then split them into two commits with different messages.

Once you’ve made changes to files in your local repository, you can see them by typing:

git status

Tell git to track files by typing:

git add path/to/file-to-be-added.py

Doing git status again should give something like:

On branch shiny-new-feature
#
modified: /relative/path/to/file-you-added.py
#

Then commit with:

git commit -m

This opens up a message editor.

Always add a descriptive comment for your commit message (feel free to be verbose!):

• use a short (<50 characters) subject line that summarizes the change

• leave a blank line

• optionally, add additional more verbose descriptions; paragraphs or bullet lists (with - or *) are good

• manually break lines at 80 characters

• manually indent bullet lists

See also:

See Tim Pope’s A Note About Git Commit Messages for a rationale for these rules.

Pushing your code to GitHub

When you want your changes to appear publicly on your GitHub page, push your forked feature branch’s commits:

git push origin shiny-new-feature

222 Chapter 2. Participating

http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html

MDAnalysis User Guide

Here origin is the default name given to your remote repository on GitHub. You can see the remote repositories:

git remote -v

If you added the upstream repository as described above you will see something like:

origin git@github.com:your-username/mdanalysis.git (fetch)
origin git@github.com:your-username/mdanalysis.git (push)
upstream git@github.com:MDAnalysis/mdanalysis.git (fetch)
upstream git@github.com:MDAnalysis/mdanalysis.git (push)

Now your code is on GitHub, but it is not yet a part of the MDAnalysis project. For that to happen, a pull request
needs to be submitted on GitHub.

Rebasing your code

Often the upstream MDAnalysis develop branch will be updated while you are working on your own code. You will
then need to update your own branch with the new code to avoid merge conflicts. You need to first retrieve it and then
rebase your branch so that your changes apply to the new code:

git fetch upstream
git rebase upstream/develop

This will replay your commits on top of the latest development code from MDAnalysis. If this leads to merge conflicts,
you must resolve these before submitting your pull request. If you have uncommitted changes, you will need to git
stash them prior to updating. This will effectively store your changes and they can be reapplied after updating with
git stash apply.

Once rebased, push your changes:

git push -f origin shiny-new-feature

and create a pull request.

Creating a pull request

The typical approach to adding your code to MDAnalysis is to make a pull request on GitHub. Please make sure that
your contribution passes all tests. If there are test failures, you will need to address them before we can review your
contribution and eventually merge them. If you have problems with making the tests pass, please ask for help! (You
can do this in the comments of the pull request).

1. Navigate to your repository on GitHub

2. Click on the Pull Request button

3. You can then click on Commits and Files Changed to make sure everything looks okay one last time

4. Write a description of your changes and follow the PR checklist

• check that docs are updated

• check that tests run

• check that you’ve updated CHANGELOG

• reference the issue that you address, if any

5. Click Send Pull Request.

2.1. Communications 223

https://www.atlassian.com/git/tutorials/rewriting-history/git-rebase
https://github.com/MDAnalysis/mdanalysis/pulls
https://help.github.com/en/github/collaborating-with-issues-and-pull-requests/about-pull-requests

MDAnalysis User Guide

Your pull request is then sent to the repository maintainers. After this, the following happens:

1. A suite of tests are run on your code with the tools Travis, Appveyor and Codecov. If they fail, please fix your
pull request by pushing updates to it.

2. Developers will ask questions and comment in the pull request. You may be asked to make changes.

3. When everything looks good, a core developer will merge your code into the develop branch of MDAnalysis.
Your code will be in the next release.

If you need to make changes to your code, you can do so on your local repository as you did before. Committing and
pushing the changes will update your pull request and restart the automated tests.

Working with the code documentation

MDAnalysis maintains two kinds of documentation:

1. This user guide: a map of how MDAnalysis works, combined with tutorial-like overviews of specific topics
(such as the analyses)

2. The documentation generated from the code itself. Largely built from code docstrings, these are meant to
provide a clear explanation of the usage of individual classes and functions. They often include technical or
historical information such as in which version the function was added, or deprecation notices.

This guide is for the documentation generated from the code. If you are looking to contribute to the user guide, please
see Contributing to the user guide.

MDAnalysis has a lot of documentation in the Python doc strings. The docstrings follow the Numpy Docstring
Standard, which is used widely in the Scientific Python community. They are nice to read as normal text and are
converted by sphinx to normal ReST through napoleon.

This standard specifies the format of the different sections of the docstring. See this document for a detailed explana-
tion, or look at some of the existing functions to extend it in a similar manner.

Note that each page of the online documentation has a link to the Source of the page. You can look at it in order to
find out how a particular page has been written in reST and copy the approach for your own documentation.

Building the documentation

The online documentation is generated from the pages in mdanalysis/package/doc/sphinx/source/
documentation_pages. The documentation for the current release are hosted at www.mdanalysis.org/docs, while
the development version is at www.mdanalysis.org/mdanalysis/.

In order to build the documentation, you must first clone the main MDAnalysis repo. Set up a virtual environment in
the same way as you would for the code (you can use the same environment as you do for the code). You will need to
install several packages for the docs.

pip install sphinx sphinx-sitemap sphinx_rtd_theme

In addition, build the development version of MDAnalysis (if you haven’t done this already):

pip install -e .

Then, generate the docs with:

python setup.py build_sphinx -E

This generates and updates the files in doc/html. If the above command fails with an ImportError, run

224 Chapter 2. Participating

https://www.mdanalysis.org/UserGuide/
https://www.mdanalysis.org/docs/
https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard
https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard
http://sphinxcontrib-napoleon.readthedocs.org/en/latest/index.html
https://github.com/numpy/numpy/blob/master/doc/HOWTO_DOCUMENT.rst.txt
https://www.mdanalysis.org/docs/

MDAnalysis User Guide

python setup.py build_ext --inplace

and retry.

You will then be able to open the home page, doc/html/index.html, and look through the docs. In particular,
have a look at any pages that you tinkered with. It is typical to go through multiple cycles of fix, rebuild the docs,
check and fix again.

If rebuilding the documentation becomes tedious after a while, install the sphinx-autobuild extension.

Where to write docstrings

When writing Python code, you should always add a docstring to each public (visible to users):

• module

• function

• class

• method

When you add a new module, you should include a docstring with a short sentence describing what the module does,
and/or a long document including examples and references.

Guidelines for writing docstrings

A typical function docstring looks like the following:

def func(arg1, arg2):
"""Summary line.

Extended description of function.

Parameters

arg1 : int

Description of `arg1`
arg2 : str

Description of `arg2`

Returns

bool

Description of return value

"""
return True

See also:

The napoleon documentation has further breakdowns of docstrings at the module, function, class, method, variable,
and other levels.

• When writing reST markup, make sure that there are at least two blank lines above the reST after a numpy
heading. Otherwise, the Sphinx/napoleon parser does not render correctly.

2.1. Communications 225

https://sphinxcontrib-napoleon.readthedocs.io/en/latest/example_numpy.html

MDAnalysis User Guide

some more docs bla bla

Notes

THE NEXT TWO BLANK LINES ARE IMPORTANT.

.. versionadded:: 0.16.0

• Do not use “Example” or “Examples” as a normal section heading (e.g. in module level docs): only use it as a
NumPy doc Section. It will not be rendered properly, and will mess up sectioning.

• When writing multiple common names in one line, Sphinx sometimes tries to reference the first name. In that
case, you have to split the names across multiple lines. See below for an example:

Parameters

n_atoms, n_residues : int

numbers of atoms/residues

• We are using MathJax with sphinx so you can write LaTeX code in math tags.

In blocks, the code below

#<SPACE if there is text above equation>
.. math::

e^{i\pi} = -1

renders like so:

𝑒𝑖𝜋 = −1

Math directives can also be used inline.

We make use of the identity :math:`e^{i\pi} = -1` to show...

Note that you should always make doc strings with math code raw python strings by prefixing them
with the letter “r”, or else you will get problems with backslashes in unexpected places.

def rotate(self, R):
r"""Apply a rotation matrix *R* to the selection's coordinates.

:math:`\mathsf{R}` is a 3x3 orthogonal matrix that transforms
→˓a vector

:math:`\mathbf{x} \rightarrow \mathbf{x}'`:

.. math::

\mathbf{x}' = \mathsf{R}\mathbf{x}
"""

See also:

See Stackoverflow: Mathjax expression in sphinx python not rendering correctly for further discus-
sion.

226 Chapter 2. Participating

https://numpydoc.readthedocs.io/en/latest/format.html#docstring-standard
http://stackoverflow.com/questions/16468397/mathjax-expression-in-sphinx-python-not-rendering-correclty"

MDAnalysis User Guide

Documenting changes

We use reST constructs to annotate additions, changes, and deprecations to the code so that users can quickly learn
from the documentation in which version of MDAnalysis the feature is available.

A newly added module/class/method/attribute/function gets a versionadded directive entry in its primary doc sec-
tion, as below.

.. versionadded:: X.Y.Z

For parameters and attributes, we typically mention the new entity in a versionchanged section of the function or class
(although a versionadded would also be acceptable).

Changes are indicated with a versionchanged directive

.. versionchanged:: X.Y.Z
Description of the change. Can contain multiple descriptions.
Don't assume that you get nice line breaks or formatting, write your text in
full sentences that can be read as a paragraph.

Deprecations (features that are not any longer recommended for use and that will be removed in future releases) are
indicated by the deprecated directive:

.. deprecated:: X.Y.Z
Describe (1) alternatives (what should users rather use) and
(2) in which future release the feature will be removed.

When a feature is removed, we remove the deprecation notice and add a versionchanged to the docs of the enclosing
scope. For example, when a parameter of a function is removed, we update the docs of the function. Function/class
removal are indicated in the module docs. When we remove a whole module, we typically indicate it in the top-level
reST docs that contain the TOC tree that originally included the module.

Writing docs for abstract base classes

MDAnalysis contains a number of abstract base classes, such as AnalysisBase. Developers who define new base
classes, or modify existing ones, should follow these rules:

• The class docstring needs to contain a list of methods that can be overwritten by inheritance from the base class.
Distinguish and document methods as required or optional.

• The class docstring should contain a minimal example for how to derive this class. This demonstrates best
practices, documents ideas and intentions behind the specific choices in the API, helps to promote a unified
code base, and is useful for developers as a concise summary of the API.

• A more detailed description of methods should come in the method docstring, with a note specifying if the
method is required or optional to overwrite.

See the documentation of MDAnalysis.analysis.base.AnalysisBase for an example of this documenta-
tion.

Adding your documentation to MDAnalysis

As with any contribution to an MDAnalysis repository, commit and push your documentation contributions to GitHub.
If any fixes in the restructured text are needed, put them in their own commit (and do not include any generated files
under docs/html). Try to keep all reST fixes in the one commit. git add FILE and git commit --amend is
your friend when piling more and more small reST fixes onto a single “fixed reST” commit.

2.1. Communications 227

https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-versionadded
https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-versionchanged
https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-versionadded
https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-versionchanged
https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-deprecated
https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html#directive-versionchanged
https://www.mdanalysis.org/docs/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.AnalysisBase
https://www.mdanalysis.org/docs/documentation_pages/analysis/base.html#MDAnalysis.analysis.base.AnalysisBase

MDAnalysis User Guide

We recommend building the docs locally first to preview your changes. Then, create a pull request. All the tests in the
MDAnalysis test suite will run, but only one checks that the documents compile correctly.

Viewing the documentation interactively

In the Python interpreter one can simply say:

import MDAnalysis
help(MDAnalysis)
help(MDAnalysis.Universe)

In ipython one can use the question mark operator:

In [1]: MDAnalysis.Universe?

2.1.34 Contributing to the user guide

MDAnalysis maintains two kinds of documentation:

1. This user guide: a map of how MDAnalysis works, combined with tutorial-like overviews of specific topics
(such as the analyses)

2. The documentation generated from the code itself. Largely built from code docstrings, these are meant to
provide a clear explanation of the usage of individual classes and functions. They often include technical or
historical information such as in which version the function was added, or deprecation notices.

This guide is about how to contribute to the user guide. If you are looking to add to documentation of the main code
base, please see Working with the code documentation.

The user guide makes use of a number of Sphinx extensions to ensure that the code examples are always up-to-date.
These include nbsphinx and the ipython directive.

The ipython directive lets you put code in the documentation which will be run during the doc build. For example:

.. ipython:: python

x = 2
x**3

will be rendered as:

In [1]: x = 2

In [2]: x**3
Out[2]: 8

Many code examples in the docs are run during the doc build. This approach means that code examples will always
be up to date, but it does make the doc building a bit more complex.

Here is an overview of the development workflow for the user guide, as expanded on throughout the rest of the page.

1. Fork the MDAnalysis repository from the mdanalysis account into your own account

2. Set up an isolated virtual environment for your documentation

3. Create a new branch off the master branch

4. Add your new documentation.

228 Chapter 2. Participating

https://www.mdanalysis.org/UserGuide/
https://www.mdanalysis.org/docs/
https://nbsphinx.readthedocs.io
http://matplotlib.org/sampledoc/ipython_directive.html

MDAnalysis User Guide

5. Build and view the documentation.

6. Commit and push your changes, and open a pull request.

Forking and cloning the User Guide

Go to the MDAnalysis project page and hit the Fork button. You will want to clone your fork to your machine:

git clone https://github.com/your-user-name/UserGuide.git
cd UserGuide
git remote add upstream https://github.com/MDAnalysis/UserGuide

This creates the directory UserGuide and connects your repository to the upstream (main project) MDAnalysis repos-
itory.

Creating a development environment

Create a new virtual environment for the user guide. Install the required dependencies, and activate the nglview
extension. We use nglview for visualizing molecules in Jupyter notebook tutorials.

If using conda:

cd UserGuide/
conda env create python=3.6 -f environment.yml --quiet
conda activate mda-user-guide
jupyter-nbextension enable nglview --py --sys-prefix

If using pip:

cd UserGuide/
pip install -r requirements.txt
jupyter-nbextension enable nglview --py --sys-prefix

Building the user guide

Navigate to the doc/ directory and run make html:

cd doc/
make html

The HTML output will be in doc/build/, which you can open in your browser of choice. The homepage is doc/
build/index.html.

If rebuilding the documentation becomes tedious after a while, install the sphinx-autobuild extension.

Saving state in Jupyter notebooks

One of the neat things about nglview is the ability to interact with molecules via the viewer. This ability can be
preserved for the HTML pages generated from Jupyer notebooks by nbsphinx, if you save the notebook widget
state after execution.

2.1. Communications 229

https://github.com/MDAnalysis/UserGuide

MDAnalysis User Guide

Adding changes to the UserGuide

As with the code, commit and push your code to GitHub. Then create a pull request. The only test run for the User
Guide is: that your file compile into HTML documents without errors. As usual, a developer will review your PR and
merge the code into the User Guide when it looks good.

It is often difficult to review Jupyter notebooks on GitHub, especially if you embed widgets and images. One way to
make it easier on the developers who review your changes is to build the changes on your forked repository and link
the relevant sections in your pull request. To do this, create a gh-pages branch and merge your new branch into it.

the first time
git checkout -b gh-pages
git merge origin/my-new-branch

Fix any merge conflicts that arise. Then edit UserGuide/doc/source/conf.py and change the URL of the site,
which is set to site_url = "https://www.mdanalysis.org/UserGuide". Change it to your personal
site, e.g.

site_url = "https://www.my_user_name.github.io/UserGuide"

Now you can build your pages with the make github macro in the UserGuide/doc/ directory, which builds the
files and copies them to the top level of your directory.

make github

You should be able to open one of these new HTML files (e.g. UserGuide/index.html) in a browser and
navigate your new documentation. Check that your changes look right. If they are, push to your gh-pages branch from
the UserGuide/ directory.

git add .
git commit -m 'built my-new-branch'
git push -f origin gh-pages

On GitHub, navigate to your fork of the repository and go to Settings. In the GitHub Pages section, select the
“gh-pages branch” from the Source dropdown. Check that your website is published at the given URL.

For each time you add changes to another branch later, just merge into gh-pages and rebuild.

230 Chapter 2. Participating

MDAnalysis User Guide

git checkout gh-pages
git merge origin/my_branch
cd doc/
make github

Automatically building documentation

Constantly rebuilding documentation can become tedious when you have many changes to make. Use sphinx-
autobuild to rebuild documentation every time you make changes to any document, including Jupyter notebooks.
Install sphinx-autobuild:

pip install sphinx-autobuild

Then, run the following command in the doc/ directory:

python -m sphinx_autobuild source build

This will start a local webserver at http://localhost:8000/, which will refresh every time you save changes to a file in the
documentation. This is helpful for both the user guide (first navigate to UserGuide/doc) and the main repository
documentation (navigate to package/doc/sphinx).

2.1.35 Preparing a release

Rules for a release branch:

• May branch from: develop

• Must be merged into: master (and develop if needed)

• Naming convention: release-* where * is a version number

Release policy and release numbering

We use a MAJOR.MINOR.PATCH scheme to label releases. We adhere to the idea of semantic versioning (semantic
versioning was introduced with release 0.9, see Issue 200): Given a version number MAJOR.MINOR.PATCH, we
increment the:

• MAJOR version when we make incompatible API changes,

• MINOR version when we add functionality in a backwards-compatible manner, and

• PATCH version when we make backwards-compatible bug fixes.

However, as long as the MAJOR number is 0 (i.e. the API has not stabilized), even MINOR increases may introduce
incompatible API changes. As soon as we have a 1.0.0 release, the public API can only be changed in a backward-
incompatible manner with an increase in MAJOR version.

Additional labels for pre-release and build metadata are available as extensions to the MAJOR.MINOR.PATCH format.

The CHANGELOG lists important changes for each release.

MAJOR, MINOR and PATCH numbers are integers that increase monotonically.

The release number is set in setup.py and in MDAnalysis.__version__ (MDAnalysis/version.py), e.g.

RELEASE = '0.7.5'

2.1. Communications 231

https://pypi.org/project/sphinx-autobuild
https://pypi.org/project/sphinx-autobuild
http://localhost:8000/
http://semver.org/
https://github.com/MDAnalysis/mdanalysis/issues/200
https://github.com/MDAnalysis/mdanalysis/blob/develop/package/CHANGELOG
https://github.com/MDAnalysis/mdanalysis/blob/develop/package/setup.py

MDAnalysis User Guide

While the code is in development (i.e. whenever we are not preparing a release!) the release number gets the suffix
-dev0, e.g.

RELEASE = '0.7.6-dev0'

so that people using the develop branch from the source repository can immediately see that it is not a final release.
For example, “0.7.6-dev0” is the state before the 0.7.6 release.

Typical workflow for preparing a release

1. Declare feature freeze on develop via the developer mailing list

2. Create a release branch from develop:

git checkout -b release-0.7.6 develop

3. Finalise the CHANGELOG with the release number and date. Summarize important changes and add all authors
that contributed to this release.

4. Make sure the version number is right:

./maintainer/change_release.sh 0.7.6

5. Check that the documentation is up-to-date and tests pass. Check that any new Cython code has compiled.

6. Commit the finalized state:

git commit -m "release 0.7.6 ready"

7. Build a source distribution tarballs under package/dist/MDAnalysis-MAJOR-MINOR-PATCH.tar.
gz and testsuite/dist/MDAnalysisTests-MAJOR-MINOR-PATCH.tar.gz:

MDAnalysis
cd package/
python setup.py sdist

MDAnalysisTests
cd ../testsuite/
python setup.py sdist

8. Test the distribution in a tmp directory.

1. Unpack and try to build it:

mkdir tmp && cd tmp
tar -zxvf ../dist/MDAnalysis-0.7.5.tar.gz
cd MDAnalysis-0.7.5
python setup.py build --build-lib=.

2. Run the tests again:

python
>>> import MDAnalysis.tests
>>> MDAnalysis.tests.test(label='full', extra_argv=['--exe'])

The above should work at least on Linux and Mac OS X. If it fails then go back and fix things
and do not release.

9. If everything works, merge the branch into master and tag the release:

232 Chapter 2. Participating

https://groups.google.com/forum/#!forum/mdnalysis-devel

MDAnalysis User Guide

git checkout master
git merge --no-ff release-0.7.6
git tag -m 'release 0.7.5 of MDAnalysis and MDAnalysisTests' release-0.7.5
git push --tags origin master

10. Merge the branch back into develop (this is not required if the only change was the version number):

git checkout develop
git merge --no-ff release-0.7.6
./maintainer/change_release.sh 0.7.7-devel
git commit -a -m "version number changed to 0.7.7-devel"

11. Build and deploy the docs manually. (You may need to first pip install sphinx==2.2.0
sphinx_sitemap sphinx_rtd_theme):

cd package/
python setup.py build_sphinx
cd ..

You need a OAUTH token that gives commit access to the MDAnalysis/docs repo
export GH_TOKEN=<secret>

./maintainer/deploy_master_docs.sh

12. Update the release on the Python package index (Pypi)

1. Upload the package to Pypi. You need to have run python setup.py register previously.

twine upload -r pypi dist/MDAnalysis-0.16.2.tar.gz

2. Upload the docs to Pypi

3. Make the new tar ball a featured release so that it shows up on the front page (and unfeature any older
releases).

4. Provide a short description (a condensed version of the CHANGELOG)

13. Update the release on Anaconda

conda packages are built on conda-forge.

1. Create a pull request from https://github.com/MDAnalysis/mdanalysis-feedstock for https://
github.com/conda-forge/mdanalysis-feedstock

2. Create a pull request from https://github.com/MDAnalysis/mdanalysistests-feedstock to https:
//github.com/conda-forge/mdanalysistests-feedstock

14. Create a ReleaseXYZ wiki page, modelled after e.g. Release062 (using the CHANGELOG as a reference). Add
it to the Release Notes.

15. Delete the release branch:

git branch -d release-0.7.6

2.1.36 Module imports in MDAnalysis

We are striving to keep module dependencies small and lightweight (i.e., easily installable with pip).

2.1. Communications 233

https://github.com/MDAnalysis/mdanalysis-feedstock
https://github.com/conda-forge/mdanalysis-feedstock
https://github.com/conda-forge/mdanalysis-feedstock
https://github.com/MDAnalysis/mdanalysistests-feedstock
https://github.com/conda-forge/mdanalysistests-feedstock
https://github.com/conda-forge/mdanalysistests-feedstock
https://github.com/MDAnalysis/mdanalysis/wiki/Release062
https://github.com/MDAnalysis/mdanalysis/wiki/Release-Notes

MDAnalysis User Guide

General rules for importing

• Imports should all happen at the start of a module (not inside classes or functions).

• Modules must be imported in the following order:

– future (from __future__ import absolute_import, print_function, division)

– Compatibility imports (e.g. six)

– global imports (installed packages)

– local imports (MDAnalysis modules)

• use absolute imports in the library (i.e. relative imports must be explicitly indicated)

For example:

from __future__ import absolute_import
from six.moves import range

import numpy as np

import .core
import ..units

Module imports in MDAnalysis.analysis

1. In MDAnalysis.analysis, all imports must be at the top level (as in the General Rule) — see Issue 666 for
more information.

2. Optional modules can be imported

3. No analysis module is imported automatically at the MDAnalysis.analysis level to avoid breaking the
installation when optional dependencies are missing.

Module imports in the test suite

• Use the module import order in General rules for importing, but import MDAnalysis modules before
MDAnalysisTests imports

• Do not use relative imports (e.g. import .datafiles) in the test suite. This breaks running the tests from
inside the test directory (see Issue 189 for more information)

• Never import the MDAnalysis module from the __init__.py of MDAnalysisTests or from any of its
plugins (it’s ok to import from test files). Importing MDAnalysis from the test setup code will cause severe
coverage underestimation.

Module dependencies in the code

List of core module dependencies

Any module from the standard library can be used, as well as the following nonstandard libraries:

• six

• numpy

234 Chapter 2. Participating

https://docs.python.org/2/library/__future__.html
https://github.com/MDAnalysis/mdanalysis/issues/666
https://github.com/MDAnalysis/mdanalysis/issues/189
https://numpy.org/doc/stable/reference/index.html#module-numpy

MDAnalysis User Guide

• biopython

• gridDataFormats

• mmtf-python

• scipy

• matplotlib

because these packages are always installed.

If you must depend on a new external package, first discuss its use on the developer mailing list or as part of the
issue/pull request.

Modules in the “core”

The core of MDAnalysis contains all packages that are not in MDAnalysis.analysis or MDAnalysis.
visualization. Only packages in the List of core module dependencies can be imported.

Optional modules in MDAnalysis.analysis and MDAnalysis.visualization

Modules under MDAnalysis.analysis are considered independent from the core package. Each analysis module
can have its own set of dependencies. We strive to keep them small, but module authors are, in principle, free to
import what they need. When analysis modules import packages outside of List of core module dependencies, the
dependencies are considered optional (and should be listed in setup.py under analysis). (See also Issue 1159 for
more discussion.)

A user who does not have a specific optional package installed must still be able to import everything else in MDAnal-
ysis. An analysis module may simply raise an ImportError if a package is missing. However, it is recommended
that the module should print and log an error message notifying the user that a specific additional package needs to be
installed to use it.

If a large portion of the code in the module does not depend on a specific optional module then you should:

• guard the import at the top level with a try/except

• print and log a warning

• only raise an ImportError in the specific function or method that would depend on the missing module.

2.1.37 Tests in MDAnalysis

Note: Parts of this page came from the Contributing to pandas guide.

Whenever you add new code, you should create an appropriate test case that checks that your code is working as it
should. This is very important because:

1. Firstly, it ensures that your code works as expected, i.e.

• it succeeds in your test cases and

• it fails predictably

2. More importantly, in the future we can always test that it is still working correctly. Unit tests are a crucial
component of proper software engineering (see e.g. Software Carpentry on Testing) and a large (and growing)
test suite is one of the strengths of MDAnalysis.

2.1. Communications 235

https://groups.google.com/forum/#!forum/mdnalysis-devel
https://github.com/MDAnalysis/mdanalysis/issues/1159
http://pandas.pydata.org/pandas-docs/stable/contributing.html
http://software-carpentry.org/4_0/test

MDAnalysis User Guide

Adding tests is one of the most common requests after code is pushed to MDAnalysis. Therefore, it is worth getting
in the habit of writing tests ahead of time so this is never an issue. We strive for 90% our code to be covered by tests.

We strongly encourage contributors to embrace test-driven development. This development process “relies on the
repetition of a very short development cycle: first the developer writes an (initially failing) automated test case that
defines a desired improvement or new function, then produces the minimum amount of code to pass that test.” So,
before actually writing any code, you should write your tests. Often the test can be taken from the original GitHub
issue. However, it is always worth considering additional use cases and writing corresponding tests.

Like many packages, MDAnalysis uses pytest and some of the numpy.testing framework.

Running the test suite

It is recommended that you run the tests from the mdanalysis/testsuite/MDAnalysisTests/ directory.

cd testsuite/MDAnalysisTests
pytest --disable-pytest-warnings

All tests should pass: no FAIL or ERROR cases should be triggered; SKIPPED or XFAIL are ok. For anything that
fails or gives an error, ask on the mdnalysis-discussion mailing list or raise an issue on the Issue Tracker.

We use the --disable-pytest-warnings when the whole testsuite is running, as pytest raises a lot of false
positives when we warn users about missing topology attributes. When running single tests or only single modules,
consider running the tests with warnings enabled (i.e. without --disable-pytest-warnings). This allows you
to see if you trigger any un-caught deprecation warnings or other warnings in libraries we use.

To run specific tests just specify the path to the test file:

pytest testsuite/MDAnalysisTests/analysis/test_align.py

Specific test classes inside test files, and even specific test methods, can also be specified:

Test the entire TestContactMatrix class
pytest testsuite/MDAnalysisTests/analysis/test_analysis.py::TestContactMatrix

Test only test_sparse in the TestContactMatrix class
pytest testsuite/MDAnalysisTests/analysis/test_analysis.py::TestContactMatrix::test_
→˓sparse

This is very useful when you add a new test and want to check if it passes. However, before you push your code to
GitHub, make sure that your test case runs and that all other test cases are still passing.

Testing in parallel

Running the tests serially can take some time, depending on the performance of your computer. You can speed this up
by using the plugin pytest-xdist to run tests in parallel by specifying the --numprocesses option:

pip install pytest-xdist
pytest --disable-pytest-warnings --numprocesses 4

You can try increasing the number of processes to speed up the test run. The number of processes you can use depends
on your machine.

236 Chapter 2. Participating

http://en.wikipedia.org/wiki/Test-driven_development
http://doc.pytest.org/en/latest/
http://docs.scipy.org/doc/numpy/reference/routines.testing.html
http://groups.google.com/group/mdnalysis-discussion
https://github.com/MDAnalysis/mdanalysis/issues
https://github.com/pytest-dev/pytest-xdist

MDAnalysis User Guide

Test coverage

The tool pytest-cov can be used to generate the coverage report locally:

pip install pytest-cov
pytest --cov=MDAnalysis

Note: You can use the --numprocesses flag to run tests in parallel with the above command too. This will print
the coverage statistic for every module in MDAnalysis at the end of a run. To get detailed line by line statistics you
can add the --cov-report=html flag. This will create a htmlcov folder (in the directory you run the command
from) and there will be an index.html file in this folder. Open this file in your browser and you will be able to see
overall statistics and detailed line coverage for each file.

Continuous Integration tools

When you submit your pull request, several continuous integration tools will run a suite of tests. These should all pass
before your code can be merged into MDAnalysis. You can check tests locally by running the test suite.

If your pull request fails immediately with an Appveyor error, it is likely that you have merge conflicts with the latest
code in the develop branch. Rebase your code and update your branch by pushing your changes.

If you get an error with Travis, it is likely that you’ve failed a particular test. You should update your code and push
again.

If you get Codecov errors, this means that your changes have not been adequately tested. Add new tests that address
the “missed” lines, and push again.

Ideally, you want all tests to pass. This will look like:

Appveyor

AppVeyor is a continuous integration/continuous deployment service. MDAnalysis uses it for testing builds on Win-

2.1. Communications 237

https://github.com/pytest-dev/pytest-cov
https://ci.appveyor.com/project/orbeckst/mdanalysis
https://ci.appveyor.com/project/orbeckst/mdanalysis

MDAnalysis User Guide

dows.

Builds are configured in the file .appveyor.yml. If you add a new dependency to MDAnalysis, you will need to
add it to the $CONDA_DEPENDENCIES or $PIP_DEPENDENCIES in .appveyor.yml to pass tests.

Travis

Travis is a continuous integration service for Linux and MacOS. MDAnalysis uses it for exhaustive testing on Linux
systems, and some testing on MacOS. If you add a new dependency to MDAnalysis, you will need to add it to the
$CONDA_DEPENDENCIES or $PIP_DEPENDENCIES in .travis.yml to pass tests.

Codecov

Code coverage measures how many lines, and which lines, of code are executed by a test suite. Codecov is a service
that turns code coverage reports into a single visual report. Each line is described as one of three categories:

• a hit indicates that the source code was executed by the test suite.

• a partial indicates that the source code was not fully executed by the test suite; there are remaining branches
that were not executed.

• a miss indicates that the source code was not executed by the test suite.

Coverage is the ratio of hits / (sum of hit + partial + miss). See the Codecov documentation for
more information.

MDAnalysis aims for 90% code coverage; your pull request will fail the Codecov check if the coverage falls below
85%. You can increase coverage by writing futher tests.

On your pull request, Codecov will leave a comment with three sections:

• a visual map of the areas with coverage changes

• a summary of changes in coverage

238 Chapter 2. Participating

https://ci.appveyor.com/project/orbeckst/mdanalysis
https://ci.appveyor.com/project/orbeckst/mdanalysis
https://travis-ci.com/MDAnalysis/mdanalysis
https://docs.codecov.io/docs/about-code-coverage

MDAnalysis User Guide

• a list of files with changes

Clicking on one of those files will show the Codecov Diff view, highlighting the lines of code that have been missed
by tests. In the image below, the column on the left hand side shows hits (green) and misses (red); the lighter colours
highlighting the code show lines added (light green) or removed (light red).

Changing to the Coverage Changes view highlights how your additions have changed the test coverage. See the
documentation for viewing source code for more information.

2.1. Communications 239

https://docs.codecov.io/docs/viewing-source-code

MDAnalysis User Guide

Writing new tests

Tests are organised by top-level module. Each file containing tests must start with test_. The tests themselves also
have to follow the appropriate naming and organisational conventions.

Use classes to group tests if it makes sense (e.g., if the test class will be inherited by another test class and the code can
be reused). We prefer subclassing over parametrizing classes (for examples, have a look at the MDAnalysisTests/
topology module, where each class often tests a different file). For tests that are standalone, leave them as plain
functions.

General conventions

Assertions

Use plain assert statements for comparing single values, e.g.

def test_foo_is_length_3(foo):
assert len(foo) == 3

To check equality up to a certain precision (e.g. floating point numbers and iterables of floats), use
assert_almost_equal() from numpy.testing. Do not manually round off the value and use plain assert
statements. Do not use pytest.approx.

from numpy.testing import assert_almost_equal

def test_equal_coordinates():
ref = mda.Universe(PSF, PDB_small)
u = mda.Universe(PDB_small)
assert_almost_equal(u.atoms.positions, ref.atoms.positions)

To test for exact equality (e.g. integers, booleans, strings), use assert_equal() from numpy.testing. As
with assert_almost_equal(), this should be used for iterables of exact values as well. Do not iterate over and
compare every single value.

from numpy.testing import assert_equal

def test_equal_arrays(array1, array2):
assert_equal(array1, array2)

Do not use assert_array_equal or assert_array_almost_equal from numpy.testing to compare
array/array-like data structures. Instead, use assert_equal() or assert_almost_equal(). The former set
of functions equate arrays and scalars, while the latter do not:

240 Chapter 2. Participating

https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_almost_equal.html#numpy.testing.assert_almost_equal
https://numpy.org/doc/stable/reference/routines.testing.html#module-numpy.testing
https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_equal.html#numpy.testing.assert_equal
https://numpy.org/doc/stable/reference/routines.testing.html#module-numpy.testing
https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_almost_equal.html#numpy.testing.assert_almost_equal
https://numpy.org/doc/stable/reference/routines.testing.html#module-numpy.testing
https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_equal.html#numpy.testing.assert_equal
https://numpy.org/doc/stable/reference/generated/numpy.testing.assert_almost_equal.html#numpy.testing.assert_almost_equal

MDAnalysis User Guide

In [1]: from numpy.testing import assert_equal, assert_array_equal

In [2]: assert_array_equal([1], 1)

In [3]: assert_equal([1], 1)

AssertionError Traceback (most recent call last)
<ipython-input-3-fa6316479812> in <module>
----> 1 assert_equal([1], 1)

~/checkouts/readthedocs.org/user_builds/mdauserguide/envs/pr76/lib/python3.7/site-
→˓packages/numpy/testing/_private/utils.py in assert_equal(actual, desired, err_msg,
→˓verbose)

390 # isscalar test to check cases such as [np.nan] != np.nan
391 if isscalar(desired) != isscalar(actual):

--> 392 raise AssertionError(msg)
393
394 # Inf/nan/negative zero handling

AssertionError:
Items are not equal:
ACTUAL: [1]
DESIRED: 1

Do not use anything from numpy.testing that depends on nose, such as assert_raises.

Testing exceptions and warnings

Do not use assert_raises from numpy.testing or the pytest.mark.raises decorator to test for partic-
ular exceptions. Instead, use context managers:

def test_for_error():
a = [1, 2, 3]
with pytest.raises(IndexError):

b = a[4]

def test_for_warning():
with pytest.warns(DeprecationWarning):

deprecated_function.run()

Failing tests

To mark an expected failure, use pytest.mark.xfail() decorator:

@pytest.mark.xfail
def tested_expected_failure():

assert 1 == 2

To manually fail a test, make a call to pytest.fail():

def test_open(self, tmpdir):
outfile = str(tmpdir.join('lammps-writer-test.dcd'))
try:

with mda.coordinates.LAMMPS.DCDWriter(outfile, n_atoms=10):

(continues on next page)

2.1. Communications 241

https://numpy.org/doc/stable/reference/routines.testing.html#module-numpy.testing
https://numpy.org/doc/stable/reference/routines.testing.html#module-numpy.testing
https://docs.pytest.org/en/latest/reference.html#pytest.mark.xfail
https://docs.pytest.org/en/latest/reference.html#pytest.fail

MDAnalysis User Guide

(continued from previous page)

pass
except Exception:

pytest.fail()

Skipping tests

To skip tests based on a condition, use pytest.mark.skipif(condition) decorator:

import numpy as np
try:

from numpy import shares_memory
except ImportError:

shares_memory = False

@pytest.mark.skipif(shares_memory == False,
reason='old numpy lacked shares_memory')

def test_positions_share_memory(original_and_copy):
check that the memory in Timestep objects is unique
original, copy = original_and_copy
assert not np.shares_memory(original.ts.positions, copy.ts.positions)

To skip a test if a module is not available for importing, use pytest.importorskip('module_name')

def test_write_trajectory_netCDF4(self, universe, outfile):
pytest.importorskip("netCDF4")
return self._test_write_trajectory(universe, outfile)

Fixtures

Use fixtures as much as possible to reuse “resources” between test methods/functions. Pytest fixtures are functions
that run before each test function that uses that fixture. A fixture is typically set up with the pytest.fixture()
decorator, over a function that returns the object you need:

@pytest.fixture
def universe(self):

return mda.Universe(self.ref_filename)

A function can use a fixture by including its name in its arguments:

def test_pdb_write(self, universe):
universe.atoms.write('outfile.pdb')

The rule of thumb is to use the largest possible scope for the fixture to save time. A fixture declared with a class scope
will run once per class; a fixture declared with a module scope will only run once per module. The default scope is
"function".

@pytest.fixture(scope='class')
def universe(self):

return mda.Universe(self.ref_filename)

242 Chapter 2. Participating

https://docs.pytest.org/en/latest/reference.html#pytest.mark.skipif
https://docs.pytest.org/en/latest/reference.html#pytest.importorskip
https://docs.pytest.org/en/latest/fixture.html
https://docs.pytest.org/en/latest/reference.html#pytest.fixture

MDAnalysis User Guide

Testing the same function with different inputs

Use the pytest.mark.parametrize() decorator to test the same function for different inputs rather than loop-
ing. These can be stacked:

@pytest.mark.parametrize('pbc', (True, False))
@pytest.mark.parametrize('name, compound', (('molnums', 'molecules'),

('fragindices', 'fragments')))
fragment is a fixture defined earlier
def test_center_of_mass_compounds_special(self, fragment,

pbc, name, compound):
ref = [a.center_of_mass() for a in fragment.groupby(name).values()]
com = fragment.center_of_mass(pbc=pbc, compound=compound)
assert_almost_equal(com, ref, decimal=5)

The code above runs test_center_of_mass_compounds_special 4 times with the following parameters:

• pbc = True, name = 'molnums', compound = 'molecules'

• pbc = True, name = 'fragindices', compound = 'fragments'

• pbc = False, name = 'molnums', compound = 'molecules'

• pbc = False, name = 'fragindices', compound = 'fragments'

Temporary files and directories

Do not use os.chdir() to change directories in tests, because it can break the tests in really weird ways (see Issue
556). To use a temporary directory as the working directory, use the tmpdir.as_cwd() context manager instead:

def test_write_no_args(self, u, tmpdir): # tmpdir is an in-built fixture
with tmpdir.as_cwd():

u.atoms.write()

To create a temporary file:

def outfile(tmpdir):
temp_file = str(tmpdir.join('test.pdb'))

Module imports

Do not use relative imports in test files, as it means that tests can no longer be run from inside the test directory.
Instead, use absolute imports.

from .datafiles import PDB # this is relative and will break!
from MDAnalysisTests.datafiles import PDB # use this instead

Tests for analysis and visualization modules

Tests for analysis classes and functions should at a minimum perform regression tests, i.e., run on input and compare
to values generated when the code was added so that we know when the output changes in the future. (Even better are
tests that test for absolute correctness of results, but regression tests are the minimum requirement.)

Any code in MDAnalysis.analysis that does not have substantial testing (at least 70% coverage) will be moved
to a special MDAnalysis.analysis.legacy module by release 1.0.0. This legacy module will come with its

2.1. Communications 243

https://docs.python.org/3/library/os.html#os.chdir
https://github.com/MDAnalysis/mdanalysis/issues/556
https://github.com/MDAnalysis/mdanalysis/issues/556

MDAnalysis User Guide

own warning that this is essentially unmaintained functionality, that is still provided because there is no alternative.
Legacy packages that receive sufficient upgrades in testing can come back to the normal MDAnalysis.analysis
name space.

No consensus has emerged yet how to best test visualization code. At least minimal tests that run the code are typically
requested.

Using test data files

If possible, re-use the existing data files in MDAnalysis for tests; this helps to keep the (separate) MDAnalysisTests
package small. If new files are required (e.g. for a new coordinate Reader/Writer) then:

1. Use small files (e.g. trajectories with only a few frames and a small system).

2. Make sure that the data are not confidential (they will be available to everyone downloading MDAnalysis) and
also be aware that by adding them to MDAnalysis you license these files under the GNU Public Licence v2 (or
a compatible licence of your choice — otherwise we cannot include the files into MDAnalysis).

3. Add the files to the testsuite/MDAnalysisTests/data directory and appropriate file names and de-
scriptions to testsuite/MDAnalysisTests/datafiles.py.

4. Make sure your new files are picked up by the pattern-matching in testsuite/setup.py (in the
package_data dictionary).

2.1.38 References

MDAnalysis and the included algorithms are scientific software that are described in academic publications. Please
cite these papers when you use MDAnalysis in published work.

It is possible to automatically generate a list of references for any program that uses MDAnalysis. This list (in common
reference manager formats) contains the citations associated with the specific algorithms and libraries that were used
in the program.

Citations using Duecredit

Citations can be automatically generated using duecredit, depending on the packages used. Duecredit is easy to install
via pip. Simply type:

pip install duecredit

duecredit will remain an optional dependency, i.e. any code using MDAnalysis will work correctly even without
duecredit installed.

A list of citations for yourscript.py can be obtained using simple commands.

cd /path/to/yourmodule
python -m duecredit yourscript.py

or set the environment variable DUECREDIT_ENABLE

DUECREDIT-ENABLE=yes python yourscript.py

Once the citations have been extracted (to a hidden file in the current directory), you can use the duecredit program
to export them to different formats. For example, one can display them in BibTeX format, using:

244 Chapter 2. Participating

http://www.gnu.org/licenses/gpl-2.0.html
https://www.mdanalysis.org/docs/documentation_pages/references.html#citations-using-duecredit
https://github.com/duecredit/duecredit
https://github.com/duecredit/duecredit

MDAnalysis User Guide

duecredit summary --format=bibtex

Please cite your use of MDAnalysis and the packages and algorithms that it uses. Thanks!

2.1. Communications 245

MDAnalysis User Guide

246 Chapter 2. Participating

BIBLIOGRAPHY

[BDPW09] Oliver Beckstein, Elizabeth J. Denning, Juan R. Perilla, and Thomas B. Woolf. Zipping and Unzipping
of Adenylate Kinase: Atomistic Insights into the Ensemble of OpenClosed Transitions. Journal of
Molecular Biology, 394(1):160–176, November 2009. 00107. URL: https://linkinghub.elsevier.com/
retrieve/pii/S0022283609011164, doi:10.1016/j.jmb.2009.09.009.

[BHE13] R. B. Best, G. Hummer, and W. A. Eaton. Native contacts determine protein folding
mechanisms in atomistic simulations. Proceedings of the National Academy of Sciences,
110(44):17874–17879, October 2013. 00259. URL: http://www.pnas.org/cgi/doi/10.1073/pnas.
1311599110, doi:10.1073/pnas.1311599110.

[FKDD07] Joel Franklin, Patrice Koehl, Sebastian Doniach, and Marc Delarue. MinActionPath: maximum
likelihood trajectory for large-scale structural transitions in a coarse-grained locally harmonic en-
ergy landscape. Nucleic Acids Research, 35(suppl_2):W477–W482, July 2007. 00083. URL: https:
//academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkm342, doi:10.1093/nar/gkm342.

[GLB+16] Richard J. Gowers, Max Linke, Jonathan Barnoud, Tyler J. E. Reddy, Manuel N. Melo, Sean L.
Seyler, Jan Domański, David L. Dotson, Sébastien Buchoux, Ian M. Kenney, and Oliver Beck-
stein. MDAnalysis: A Python Package for the Rapid Analysis of Molecular Dynamics Simulations.
Proceedings of the 15th Python in Science Conference, pages 98–105, 2016. 00152. URL: https:
//conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html, doi:10.25080/Majora-629e541a-
00e.

[HKP+07] Benjamin A. Hall, Samantha L. Kaye, Andy Pang, Rafael Perera, and Philip C. Biggin. Characteriza-
tion of Protein Conformational States by Normal-Mode Frequencies. Journal of the American Chemi-
cal Society, 129(37):11394–11401, September 2007. 00020. URL: https://doi.org/10.1021/ja071797y,
doi:10.1021/ja071797y.

[JWLM78] Joël Janin, Shoshanna Wodak, Michael Levitt, and Bernard Maigret. Conformation of amino acid side-
chains in proteins. Journal of Molecular Biology, 125(3):357 – 386, 1978. 00874. URL: http://www.
sciencedirect.com/science/article/pii/0022283678904084, doi:10.1016/0022-2836(78)90408-4.

[LAT09] Pu Liu, Dimitris K. Agrafiotis, and Douglas L. Theobald. Fast determination of the optimal rotational
matrix for macromolecular superpositions. Journal of Computational Chemistry, pages n/a–n/a, 2009.
URL: http://doi.wiley.com/10.1002/jcc.21439, doi:10.1002/jcc.21439.

[LDA+03] Simon C. Lovell, Ian W. Davis, W. Bryan Arendall, Paul I. W. de Bakker, J. Michael Word, Michael G.
Prisant, Jane S. Richardson, and David C. Richardson. Structure validation by C geometry: , and C
deviation. Proteins: Structure, Function, and Bioinformatics, 50(3):437–450, January 2003. 03997.
URL: http://doi.wiley.com/10.1002/prot.10286, doi:10.1002/prot.10286.

[MADWB11] Naveen Michaud-Agrawal, Elizabeth J. Denning, Thomas B. Woolf, and Oliver Beckstein. MD-
Analysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computa-
tional Chemistry, 32(10):2319–2327, July 2011. 00778. URL: http://doi.wiley.com/10.1002/jcc.21787,
doi:10.1002/jcc.21787.

247

https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://linkinghub.elsevier.com/retrieve/pii/S0022283609011164
https://doi.org/10.1016/j.jmb.2009.09.009
http://www.pnas.org/cgi/doi/10.1073/pnas.1311599110
http://www.pnas.org/cgi/doi/10.1073/pnas.1311599110
https://doi.org/10.1073/pnas.1311599110
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkm342
https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkm342
https://doi.org/10.1093/nar/gkm342
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://conference.scipy.org/proceedings/scipy2016/oliver_beckstein.html
https://doi.org/10.25080/Majora-629e541a-00e
https://doi.org/10.25080/Majora-629e541a-00e
https://doi.org/10.1021/ja071797y
https://doi.org/10.1021/ja071797y
http://www.sciencedirect.com/science/article/pii/0022283678904084
http://www.sciencedirect.com/science/article/pii/0022283678904084
https://doi.org/10.1016/0022-2836(78)90408-4
http://doi.wiley.com/10.1002/jcc.21439
https://doi.org/10.1002/jcc.21439
http://doi.wiley.com/10.1002/prot.10286
https://doi.org/10.1002/prot.10286
http://doi.wiley.com/10.1002/jcc.21787
https://doi.org/10.1002/jcc.21787

MDAnalysis User Guide

[NCR18] Hai Nguyen, David A Case, and Alexander S Rose. NGLview–interactive molecular graphics for
Jupyter notebooks. Bioinformatics, 34(7):1241–1242, April 2018. 00024. URL: https://academic.oup.
com/bioinformatics/article/34/7/1241/4721781, doi:10.1093/bioinformatics/btx789.

[SKTB15] Sean L. Seyler, Avishek Kumar, M. F. Thorpe, and Oliver Beckstein. Path Similarity
Analysis: A Method for Quantifying Macromolecular Pathways. PLOS Computational Bi-
ology, 11(10):e1004568, October 2015. URL: https://dx.plos.org/10.1371/journal.pcbi.1004568,
doi:10.1371/journal.pcbi.1004568.

[SGW93] O S Smart, J M Goodfellow, and B A Wallace. The pore dimensions of gramicidin A. Biophysical
Journal, 65(6):2455–2460, December 1993. 00522. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/
PMC1225986/, doi:10.1016/S0006-3495(93)81293-1.

[SNW+96] O. S. Smart, J. G. Neduvelil, X. Wang, B. A. Wallace, and M. S. Sansom. HOLE: a program for
the analysis of the pore dimensions of ion channel structural models. Journal of Molecular Graphics,
14(6):354–360, 376, December 1996. 00935. doi:10.1016/s0263-7855(97)00009-x.

[SFSB14] Lukas S. Stelzl, Philip W. Fowler, Mark S. P. Sansom, and Oliver Beckstein. Flexible gates
generate occluded intermediates in the transport cycle of LacY. Journal of Molecular Biol-
ogy, 426(3):735–751, February 2014. 00000. URL: https://asu.pure.elsevier.com/en/publications/
flexible-gates-generate-occluded-intermediates-in-the-transport-c, doi:10.1016/j.jmb.2013.10.024.

[The05] Douglas L. Theobald. Rapid calculation of RMSDs using a quaternion-based characteristic polynomial.
Acta Crystallographica Section A Foundations of Crystallography, 61(4):478–480, July 2005. 00127.
URL: http://scripts.iucr.org/cgi-bin/paper?S0108767305015266, doi:10.1107/S0108767305015266.

[TPB+15] Matteo Tiberti, Elena Papaleo, Tone Bengtsen, Wouter Boomsma, and Kresten Lindorff-
Larsen. ENCORE: Software for Quantitative Ensemble Comparison. PLOS Computational Biology,
11(10):e1004415, October 2015. 00031. URL: https://journals.plos.org/ploscompbiol/article?id=10.
1371/journal.pcbi.1004415, doi:10.1371/journal.pcbi.1004415.

248 Bibliography

https://academic.oup.com/bioinformatics/article/34/7/1241/4721781
https://academic.oup.com/bioinformatics/article/34/7/1241/4721781
https://doi.org/10.1093/bioinformatics/btx789
https://dx.plos.org/10.1371/journal.pcbi.1004568
https://doi.org/10.1371/journal.pcbi.1004568
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1225986/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1225986/
https://doi.org/10.1016/S0006-3495(93)81293-1
https://doi.org/10.1016/s0263-7855(97)00009-x
https://asu.pure.elsevier.com/en/publications/flexible-gates-generate-occluded-intermediates-in-the-transport-c
https://asu.pure.elsevier.com/en/publications/flexible-gates-generate-occluded-intermediates-in-the-transport-c
https://doi.org/10.1016/j.jmb.2013.10.024
http://scripts.iucr.org/cgi-bin/paper?S0108767305015266
https://doi.org/10.1107/S0108767305015266
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004415
https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1004415
https://doi.org/10.1371/journal.pcbi.1004415

INDEX

A
atomName, 192

C
chainID, 192
charge, 192

D
DUECREDIT_ENABLE, 244

E
environment variable

DUECREDIT_ENABLE, 244

R
radius, 192
recordName, 192
residueName, 192
residueNumber, 192

S
serial, 192

X
X Y Z, 192

249

	Why MDAnalysis?
	Participating
	Bibliography
	Index

